Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Voltage sensing based built-in current sensor for IDDQ test

    Thumbnail
    View/ Open
    etd-tamu-2005C-CECN-Xue.pdf (1.421Mb)
    Date
    2006-04-12
    Author
    Xue, Bin
    Metadata
    Show full item record
    Abstract
    Quiescent current leakage test of the VDD supply (IDDQ Test) has been proven an effective way to screen out defective chips in manufacturing of Integrated Circuits (IC). As technology advances, the traditional IDDQ test is facing more and more challenges. In this research, a practical built-in current sensor (BICS) is proposed and the design is verified by three generations of test chips. The BICS detects the signal by sensing the voltage drop on supply lines of the circuit under test (CUT). Then the sensor performs analog-to-digital conversion of the input signal using a stochastic process with scan chain readout. Self-calibration and digital chopping are used to minimize offset and low frequency noise and drift. This non-invasive procedure avoids any performance degradation of the CUT. The measurement results of test chips are presented. The sensor achieves a high IDDQ resolution with small chip area overhead. This will enable IDDQ of future technology generations.
    URI
    https://hdl.handle.net/1969.1/3211
    Subject
    IDDQ
    BICS
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Xue, Bin (2005). Voltage sensing based built-in current sensor for IDDQ test. Doctoral dissertation, Texas A&M University. Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /3211.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV