Show simple item record

dc.contributor.advisorPalazzolo, Alan
dc.creatorDibua, Imoukhuede Tim Odion
dc.date.accessioned2007-04-25T20:13:21Z
dc.date.available2007-04-25T20:13:21Z
dc.date.created2006-12
dc.date.issued2007-04-25
dc.identifier.urihttps://hdl.handle.net/1969.1/4933
dc.description.abstractElectric propulsion has been studied for a long time. Most of the electrically propelled vehicles that have been developed however have been ground vehicles. Recent research by NASA has promoted the development of electric aircraft. Most aircraft are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends previous work by developing a high power density motor for aircraft propulsion. This design is novel because it does not require a dynamometer to provide the torque to drive the vehicle. Equally important for successful testing of the motor was the design and development of a spin pit interface that was used as a containment vessel during testing. The research led to a designed, fabricated, assembled, modeled, and tested motor. Voltages, currents and power outputs of the motor were measured and used to determine the motor’s efficiency. The gaps between the motor’s magnets were related to the current and power it produced, and modifications were made based on this relation. The vibrations of the motor were also studied and MATLAB codes were written and used to reduce these vibrations. Significant among the objectives was monitoring the temperatures of the motor’s stators due to their close association with the rotating parts. The windage and friction losses between the stators and the magnets provided a challenging hurdle in the research. These windage and friction losses were predicted, analyzed and measured, and modifications were made to reduce them. Finally, results were compiled, tabulated, and analyzed. Results obtained before and after the modifications were compared, and these comparisons were used to assess the necessity and effectiveness of the modifications. The efficiency of the motor was found to be 82.9% and the power density was evaluated as 33.1 W/lb based on a rotor weight of 497 lb. It was concluded that the litz wire used in the motor has high, frequency related impedances that could be reduced but not eliminated.en
dc.format.extent2386723 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectElectric Propulsionen
dc.subjectElectric Motorsen
dc.subjectDC Brushless Motorsen
dc.titleDevelopment of a high power density motor for aircraft propulsionen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberKinra, Vikram
dc.contributor.committeeMemberReddy, J. N.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record