Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Graduate and Professional School
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Graduate and Professional School
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning From Attributed Networks - Embedding, Theory, and Interactions

    Thumbnail
    View/ Open
    HUANG-DISSERTATION-2020.pdf (4.146Mb)
    Date
    2020-04-15
    Author
    Huang, Xiao
    Metadata
    Show full item record
    Abstract
    Networks are widely adopted to represent the relations between objects in many disciplines. In real-world scenarios, nodes are often associated with a rich set of data describing their characteristics, such as social networks with user-generated content. We model these systems as attributed networks. They are a unique data structure that simultaneously assesses networks and node individual attributes or content, and pervasive in practice. In this thesis, I present effective, scalable, and human-centric learning algorithms for attributed networks, to enable their actionable patterns to be easily accessible to data consumers. Most machine learning algorithms make default assumptions that instances are independent of each other, and their features are in Euclidean space. These do not hold for attributed networks. To bridge the gap, attributed network embedding (ANE) aims to learn low-dimensional vectors to represent nodes, such that actionable patterns in original networks and node attributes can be preserved. The learned representations could be directly leveraged by off-the-shelf machine learning algorithms as feature vectors or hidden layers to conduct different tasks. I systematically developed a series of ANE algorithms, which could be categorized into four classes, including coupled spectral embedding, coupled-factorizations-based embedding, joint-random-walks-based embedding, and graph neural networks, to bridge the gap between large-scale networked data and off-the-shelf machine learning algorithms. On this basis, I developed interactive embedding to involve domain experts in advancing the ANE. Experts have a better cognition in the latent information such as domain knowledge and hidden relations. So we could learn from them and incorporate their knowledge into ANE. My research enables data scientists and domain experts to effectively utilize the abundant but complex information. It broadly impacts fields such as Information Retrieval, Social Computing, Health Informatics, and Bioinformatics.
    URI
    https://hdl.handle.net/1969.1/191687
    Subject
    Data mining
    Attributed networks
    Network embedding
    Human-in-the-loop
    Distributed processing
    Graph neural networks
    Random walks
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Huang, Xiao (2020). Learning From Attributed Networks - Embedding, Theory, and Interactions. Doctoral dissertation, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /191687.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV