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ABSTRACT

Networks are widely adopted to represent the relations between objects in many disciplines. In

real-world scenarios, nodes are often associated with a rich set of data describing their character-

istics, such as social networks with user-generated content. We model these systems as attributed

networks. They are a unique data structure that simultaneously assesses networks and node indi-

vidual attributes or content, and pervasive in practice. In this thesis, I present effective, scalable,

and human-centric learning algorithms for attributed networks, to enable their actionable patterns

to be easily accessible to data consumers.

Most machine learning algorithms make default assumptions that instances are independent of

each other, and their features are in Euclidean space. These do not hold for attributed networks.

To bridge the gap, attributed network embedding (ANE) aims to learn low-dimensional vectors to

represent nodes, such that actionable patterns in original networks and node attributes can be pre-

served. The learned representations could be directly leveraged by off-the-shelf machine learning

algorithms as feature vectors or hidden layers to conduct different tasks. I systematically developed

a series of ANE algorithms, which could be categorized into four classes, including coupled spec-

tral embedding, coupled-factorizations-based embedding, joint-random-walks-based embedding,

and graph neural networks, to bridge the gap between large-scale networked data and off-the-shelf

machine learning algorithms. On this basis, I developed interactive embedding to involve do-

main experts in advancing the ANE. Experts have a better cognition in the latent information such

as domain knowledge and hidden relations. So we could learn from them and incorporate their

knowledge into ANE.

My research enables data scientists and domain experts to effectively utilize the abundant but

complex information. It broadly impacts fields such as Information Retrieval, Social Computing,

Health Informatics, and Bioinformatics.
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NOMENCLATURE

n = |V| ∈ R the number of nodes in the network

m = |U| ∈ R the number of node attribute categories

d ∈ R the dimension of embedding representation vectors

V the set of nodes in the network

E the set of edges in the network

U the set of node attribute categories

G ∈ Rn×n
+ the weighted adjacency matrix

A ∈ Rn×m
+ the node attribute matrix

S ∈ Rn×n the affinity matrix defined by node attributes

H ∈ Rn×d the final embedding representation

Z ∈ Rn×d a copy of H for optimization

N(i) the set of adjacent nodes of node i

nnz(·) the number of nonzero elements in a matrix

QG node sequences sampled from the network G

QA node sequences sampled from node attributes A

L ∈ R+ the length of each truncated random walk

δj ∈ U the j th node attribute category

A the bipartite network constructed based on node attributes A

T node index sequences sampled from G and A

τi ∈ T node sequences sampled for modeling node i
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1. INTRODUCTION1

1.1 Background and Motivation

With the prevalence of networked systems, such as social media [81], protein-protein inter-

action networks [26], and health care systems, network analysis has become an effective com-

putational tool in practice. For example, in social media, service providers recommend potential

friendships to users with link prediction techniques [5]. In proteomics, a surge of research is to

identify the protein functions, and node classification [97] has been found to be significantly in-

structive. Traditionally, we could apply graph theory, such as shortest path and maximum flow, to

perform the analysis. Examples include clustering based on normalized cuts and node classifica-

tion based on label propagation. However, learning and prediction tasks in real-world networked

systems have become incredibly complex, such as recommendations and advertising on large so-

cial networks with noisy user-generated content [5], completion of knowledge graphs with millions

of entities [61], and fraud detection in financial transaction networks. Traditional graph theory can

not directly satisfy the demands of real-world network analysis tasks.

To fill the gap and use off-the-shelf machine learning algorithms for addressing large and so-

phisticated networks, network embedding [91, 80] has been extensively investigated. Machine

learning algorithms often make default assumptions that instances are independent of each other,

and their features are in Euclidean space. These do not hold for networked data, because networks

depict the node-to-node dependencies and are in non-Euclidean space. Network embedding tar-

gets at learning a low-dimensional vector to represent each node, such that actionable patterns in

the original networks and side information can be preserved in the learned vectors. These low-

1Part of this chapter is reprinted with permission from “A General Embedding Framework for Heterogeneous
Information Learning in Large-Scale Networks” by Xiao Huang, Jundong Li, Na Zou, and Xia Hu, 2018, ACM Trans-
actions on Knowledge Discovery from Data, Vol. 1, No. 1, doi.org/10.1145/3241063, Copyright 2018 by Association
for Computing Machinery, “Graph Recurrent Networks with Attributed Random Walks” by Xiao Huang, Qingquan
Song, Yuening Li, and Xia Hu, 2019, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, Pages 732–740, Copyright 2019 by Association for Computing Machinery, and “Explor-
ing Expert Cognition for Attributed Network Embedding” by Xiao Huang, Qingquan Song, Jundong Li, and Xia Hu,
2018, Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Pages 270–278,
Copyright 2018 by Association for Computing Machinery.
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Figure 1.1: In attributed networks, each node is associated with rich data reflecting its charac-
teristics such as Texas A&M University. Attributed network embedding bridges the gap between
real-world networked systems and off-the-shelf machine learning algorithms. [36]

dimensional representations could be directly leveraged by common machine learning algorithms

as feature vectors or hidden layers to perform different tasks, such as node classification [89, 116],

anomaly detection [63], community detection [105], and link prediction [21, 40].

While most of the existing network embedding algorithms focus on pure topological struc-

ture [24, 73], in real-world systems, nodes are often not pure vertices, but associated with plentiful

attribute data, aka node attributes, describing their unique characteristics. Such systems are called

attributed networks [35, 53]. For instance, with the popularity of social networking services, people

not only make friends with each other to form online communities but also actively share opinions

and post comments. Node attributes provide rich and highly related auxiliary information apart

from network interactions for characterizing the node properties [53, 35, 86].

Node attributes are often informative and highly correlated with the network, and could be

used to boost the network embedding. For instance, social science theories such as homophily

hypothesis [64, 67] and social influence [98, 112] suggest that the network structure and node

attributes tend to be mutually dependent on each other, i.e., the formation of one depends on and

also influences the other. Figure 1.1 illustrates a toy attributed network of Twitter. The links

capture the interactions among users, and network embedding aims to map them into continuous
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vector representations, which could be directly used by different applications. Meanwhile, a user

like Texas A&M University also posts many tweets and comments that reflect her attributes. These

posts have strong associations with her following relationships. Another example could be the

Amazon product co-purchasing networks. Products purchased together tend to receive reviews

with similar topics or written by the same group of customers [65]. Massive reviews also serve as

a reliable resource for customers to find the properties of products and make informed purchase

decisions. In addition, a number of data mining applications, such as sentiment analysis [33]

and trust prediction [90], have been benefited by exploiting the correlations between geometrical

structure and node attributes.

1.2 Attributed Network Embedding

Motivated by the observations, we formally propose attributed network embedding (ANE), as

the bridges between networked systems and the off-the-shelf machine learning algorithms. Fig-

ure 1.1 illustrates its major goal. Given a set of nodes connected by a network and associated

with node attributes, we aim to represent each node as a low-dimensional vector, such that the em-

bedding representation could preserve the node proximity both in topological structure and node

attributes. ANE is crucial to the field since its learned node representations could directly be em-

ployed as node features or hidden layers by off-the-shelf machine learning algorithms to perform

various analysis tasks, such as node classification, network clustering, and anomaly detection.

However, it remains a challenging task to perform attributed network embedding. There are

three basic challenges. First, the ever-growing data volume along with the complex data properties

put demands on the scalability of algorithms. Real-world networks are often large-scale with

a sheer amount of nodes and high-dimensional node attributes. For instance, there are over 68

million monthly active Twitter users in the United States as of 20192, and each user could post

thousands of tweets. Some efforts [49, 81] have been devoted to leveraging the network structure

and node attributes for seeking a joint low-rank latent representation. They either require eigen-

decomposition [35, 48] with O(n3) time complexity in each iteration (n denotes the total number

2https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-united-states
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of nodes) or employ gradient descent [81, 107, 116] which usually has a slow convergence rate.

Second, assessing a vector representation for each node in the joint space of geometrical structure

and a distinct type of information is difficult due to the bewildering combination of heterogeneous

sources. A widely used approach to combining heterogeneous information sources is to calculate

the node proximity matrix, i.e., similarities between nodes, based on each source, and conduct joint

learning based on these homogeneous node proximities [35, 48]. But the computations of node

proximity matrices would lead to high time and space complexity, not to mention the operations.

Third, both of the topological structure and node attributes could be sparse, incomplete, and noisy,

due to the imperfect data collection. It further exacerbates the joint embedding representation

learning problem. Therefore, given the distinct characteristics of the data, existing methods cannot

be directly applied to incorporate node attributes into the network embedding.

1.3 Human-in-the-loop Embedding

The helpfulness of expert cognition motivates us to investigate the potential of utilizing it

to learn more informative embedding representations. We define the expert cognition as the

intelligence-related information that experts know beyond the data, such as the understanding of

domain knowledge [106], the awareness of conventions [14], and the perception of latent rela-

tions. An example would be the comprehension of bias in sampling, e.g., meteorologists know

that tornadoes were more likely to be recorded in areas with more population [14]. Existing work

such as explanation-based learning [16] and human-in-the-loop models [31, 44] suggest that the

involvement of experts could increase the performance of many learning tasks. Expert cognition

plays an essential role in advancing these data analysis. Since most existing network embedding

algorithms are data-driven, we are motivated to explore how to take advantage of the expert cog-

nition to enhance the performance of embedding. Sentiment analysis is a typical example of the

utilization of expert cognition, which has been successfully applied to improve the performance

of different recommendations [114]. In product review platforms such as Epinions and Slashdot,

items are recommended to users based on their historical reviews. It has been shown that most

reviews convey different levels of sentiment polarization [32], and the expert-created sentiment
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lexicons such as MPQA and SentiWordNet [87] are widely used to advance the review analysis

and recommendation [18, 114].

Although some efforts have been devoted to directly learning expert cognition from the existing

human-generated data [18], such concrete related data is still often limited and could be in different

forms. Motivated by the success of active learning [84, 85] and interactive data mining [1, 31], in

this paper, we propose to explore expert cognition via actively querying the experts. We aim to

convert their abstract cognition into concrete answers, and incorporate them into attributed network

embedding towards a more informative low-dimensional representation.

However, actively exploring expert cognition is a nontrivial task, with three major challenges

as follows. First, expert cognition does not have a concrete format and is not easy to be measured,

since it is related to the intelligence. Traditional solutions are to design specific algorithms accord-

ing to the experts’ understanding [16, 44]. It is hard to be generalized as they involve enormous

engineering experimentations to transform the domain knowledge to algorithms. Second, in a real-

world system, there are usually various types of expert cognition such as the comprehension of

word meaning and the discernment of missing edges [31]. It is difficult to model all of them, or

identify the types that can lead a significant performance gain in the embedding within a limited

number of trials. It is also expensive to design specific models for different attributed networks

and different embedding algorithms. A general way of modeling the expert cognition is essential.

Third, the expert cognition is laborious to obtain as it involves humans in the whole process. Given

a limited amount of human effort, we aim to design the queries in an effective way to maximize the

total amount of learned expert cognition. Meanwhile, the returned answers from the experts could

be heterogeneous with the attributed network. It is desired to have answers that could be easily

incorporated into the embedding.

1.4 Thesis Major Contributions

This thesis addresses three primary scientific needs. (1) How to cope with the large scale issue

while maintaining the effectiveness of modeling node proximity in the unified space composed

of both network structure and node attributes? (2) While deep learning has been demonstrated
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to be effective in modeling various unstructured data such as images and audios, existing neural

architectures could not be directly applied to embed the complex node interactions in attributed

networks. How to perform effective and efficient deep ANE? (3) Cognition of domain experts

could potentially be used to further boost the ANE. How to select the most meaningful queries to

maximize the total amount of learned expert cognition, given a limited amount of human effort?

Figure 1.2 illustrates the major contributions of this thesis. We propose a series of attributed

network embedding frameworks, to model the real-world networked systems within different sce-

narios. On the basis of ANE, we develop human-in-the-loop embedding to interactive with domain

experts or data scientists and incorporate their cognition into the embedding. The learned repre-

sentations would serve as infrastructure for developing various applications. Our key contributions

can be summarized as follows.

• We propose an accelerated attributed network embedding framework - AANE, to tackle the

aforementioned three challenges in attributed network embedding, i.e., large scale, hetero-

geneity, and sparsity. AANE accelerates the assessing of joint node proximity by decompos-

ing the complex modeling and optimization into many independent simple sub-problems.

• Different real-world attributed networks have different characteristics, so algorithms with

different theoretical foundations would have different performances. We develop another

embedding framework - FeatWalk. It handles the heterogeneity via learning node similarities

from node attributes. Since the computation of node similarities is time-consuming, we

avoid it and propose an alternative way to simulate the similarity-based random walks among

nodes to extract the local node proximity. This proposed joint walking mechanism is named

AttriWalk, which considers node attributes as a bipartite network, and utilizes it to propel the
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random walks on the original topological structures more diverse and mitigate the tendency

of converging to nodes with high centralities.

• We propose a neural-based embedding framework - GraphRNA. Based on the joint walking

mechanism AttriWalk, we advance the graph convolutional networks to a more effective

neural architecture, named graph recurrent neural networks. In this architecture, nodes are

allowed to interact within the same way as they interact in the original attributed network.

• To help existing embedding frameworks learn abstract human knowledge, we present a gen-

eral and concise framework - NEEC. It can provide experts a small number of carefully-

designed concise queries, and their answers capture expert cognition systematically and

could be directly added into the network to advance ANE. NEEC defines an effective al-

gorithm to tackle the exploration and exploitation balancing in expert cognition learning.

• We empirically evaluate the effectiveness, efficiency, and generalizability of the proposed

frameworks AANE, FeatWalk, GraphRNA, and NEEC, on several real-world datasets.

1.5 Related Work

This thesis is related to four research topics, including large-scale network embedding, at-

tributed network embedding, network lasso, and pool-based active learning.

1.5.1 Large-scale network embedding

Large-scale network embedding has become an efficient tool to deal with real-world networks.

The main question is how to efficiently learn low-dimensional representations for all vertices in

a large network, such that the original geometrical information is recoverable. Efforts have been

devoted from various aspects [24, 80, 91]. Tang and Liu [93] presented an edge-centric clustering

scheme to facilitate the learning efficiency and alleviate the memory demand. Ahmed et al. [3]

advanced a distributed matrix factorization algorithm to decompose large-scale graphs based on

stochastic gradient descent. Tang et al. [91] improved the efficiency of stochastic gradient descent

via an edge-sampling algorithm. The basic idea is to unfold a weighted edge into many binary
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edges by sampling each edge with a probability proportional to the weight. Ou et al. [73] designed

a Jacobi-Davidson type algorithm to approximate and accelerate the singular value decomposition

in the high-order proximity embedding. Wang et al. [103] involved a deep structure to embed both

first and second order proximities of nodes. Grover and Leskovec [24] involved language modeling

techniques to make the network embedding scalable. The basic idea is to conduct truncated random

walks on a graph and analyze them as sentences. Two key parameters are defined to bias the walks

towards broader or deeper space. Dong et al. [19] further advanced this idea to embed networks

with heterogeneous types of nodes, and designed a novel heterogeneous skip-gram model to jointly

learn structural and semantic correlations. Yang et al. [108] proposed to accelerate the embedding

by approximating the network proximity via a theoretical bound. Most recently, a series of deep

learning based embedding models [103, 99] have been explored. The focus of our paper is scalable

models, and a survey on network embedding could be found in [13].

1.5.2 Attributed network embedding

research has been done to analyze attributed networks in various domains. It becomes increas-

ingly promising to advance the learning performance by jointly exploiting geometrical structure

and node attributes [33, 34, 90]. Tsur and Rappoport [98] improved the prediction of the spread of

ideas by taking advantage of both content and topological features. Due to the complexity of at-

tributed networks, nodes’ properties and dependencies cannot be fully explained via these models.

We roughly categorize existing attributed network embedding models into two classes.

Shallow attributed network embedding. To incorporate the topological structure and node

attributes, attempts have been made from different aspects [35, 37]. Qi et al. [81] focused on mul-

timedia objects and learned their latent semantic representations via jointly modeling their content

information similarities and contextual links. Le and Lauw [49] advanced the topic modeling by

incorporating the links between documents. Yang et al. [107] converted the network to pointwise

mutual information and employed matrix tri-factorization to jointly embed the attributed network.

Pan et al. [74] designed a coupled random walk based model with three objectives to incorporate

the network, node attributes, and labels. Huang et al. [35] explored the potential of incorporating
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labels into the attributed network embedding. Liu et al. [63] performed local anomaly detection

based on attributed network embedding, and accelerated the embedding process via a parallel

mini-batch stochastic gradient descent. Li et al. [53] explored the attributed network embedding

in a dynamic environment, and proposed an online framework based on the matrix perturbation

theory. Yang et al. [109] proposed to leverage the Weisfeiler-Lehman graph kernels to learn binary

vector representations of attributed networks. Several coupled matrix factorization based ANE

methods [116, 56] have also been proposed.

Deep attributed network embedding. Given that rich training data becomes available, a

series of effective deep ANE algorithms have been developed. Chang et al. [10] involved non-

linear multilayered embedding functions to collaboratively embed the heterogeneous network and

node content. Kipf and Welling [45, 46] introduced the graph convolutional networks, as a first-

order approximation to the K-localized spectral graph convolution, which extended convolution

operation from spatial domains to non-Euclidean spaces. Hamilton et al. [26] proposed the in-

ductive representation learning, in which each node’s representation is learned via aggregating all

its neighbors’ representations. Liang et al. [59] advanced the inductive representation learning by

using a dual-input and dual-output neural architecture. Another line of research is to perform the

joint embedding based on sophisticated objective functions [22, 51, 60, 115]. Recently, efforts

have also been devoted to leveraging graph recurrent neural networks to conduct node or graph

representation embedding [42, 88].

Attributed network analysis is different from multi-view learning [48]. The network structure

is more than one angle of view. Its underlying properties are complex, including the connectivity,

transitivity [73], first and higher order proximities [103], etc.

1.5.3 Network lasso

Network lasso was formally defined by Hallac et al. [25] as a simultaneous clustering and op-

timization problem. The key idea is to utilize the `2-norm distances of adjacent nodes as penalties

and enforce nodes in the same cluster to have similar representations. The pioneer work of net-

work lasso could be traced back to the fused lasso [95, 29] and convex clustering [78] problems.
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Both of them can be viewed as special cases of network lasso and have been well explored. Lind-

sten et al. [62] demonstrated the equivalence between convex clustering and a convexification of

k-means clustering. They utilized the off-the-shelf convex programming software CVX to handle

the regularization. This solver is powerful in solving general convex problems but quite inefficient.

Thus, Hocking et al. [28] introduced several efficient algorithms for convex clustering with three

commonly used norms, `1, `2, and `∞. Recently, Chi and Lange [12] exploited the possibility

of finding regularization paths of arbitrary norms by using ADMM and alternating minimization

algorithm. These methods could only deal with thousands of nodes, and convex clustering often

requires to include distances between every pair of nodes as penalties. We propose to use network

lasso and symmetric matrix factorization jointly to perform the ANE. It is novel and non-trivial

since the framework is required to be both separable and effective. Efforts also have been devoted

to proving the monotonicity of the proposed updated rules.

1.5.4 Pool-based active learning

Pool-based active learning [84, 85], which learns from the oracle by inquiring labels. It aims to

select a number of unlabeled instances from a pool, such that the classification performance could

be maximized by using the labels of selected instances. The typical methods are based on uncer-

tainty sampling [52, 96], query by committee [66], expected error and variance reduction [30], or

expected model change [85]. Several efforts [7, 8] also have been devoted to balancing exploration

and exploitation based on the multi-armed bandit algorithms.

Multi-armed bandit algorithms [2, 4] are widely used to perform online human behavior or

knowledge learning. Radlinski et al. [82] exploited a bandit algorithm to conduct an online doc-

ument ranking that can learn from users behavior. Pandey et al. [75] explored the scenario when

selection strategies are dependent. Several contextual bandit based personalized recommendation

algorithms [57, 104, 111] were developed to incorporate dynamic content and user information.
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1.6 Thesis Organization and Notations

The goal of this thesis is to develop a series of attributed network embedding frameworks, to

cover the scientific needs of real-world networked systems within different scenarios. In Chapter 2,

we use the proposed scalable joint embedding framework named AANE, to demonstrate how to

handle the three basic challenges in ANE, i.e., large scale, heterogeneity, and sparsity. AANE is

motivated by the distributed matrix factorization and spectral embedding. In Chapter 3, we develop

a joint-random-walks-based embedding framework named FeatWalk. In Chapter 4, we design a

graph-neural-networks-based embedding framework named GraphRNA. In Chapter 5, on the basis

of the proposed embedding frameworks, including AANE, FeatWalk, and GraphRNA, we develop

a general way to learn from domain experts and leverage the learned knowledge to advance the

embedding representations. In Chapter 6, we conclude the thesis and propose several advanced

topics as the future work.

In this thesis, scalars are denoted by lowercase alphabets (e.g., n). Vectors are represented by

boldface lowercase alphabets (e.g., h). Matrices are denoted by boldface uppercase alphabets (e.g.,

H). The ith row of a matrix H is denoted by hi. The (i, j)th element of a matrix is denoted by hij .

The transpose of H is represented as H>. The dot product of two vectors is denoted by a · b. The

`2-norm of a vector is denoted by ‖ · ‖2.The Frobenius norm of a matrix is represented as ‖ · ‖F.

The identity matrix is denoted by I. We use nnz(·) to denote the number of nonzero elements. We

use {ri} to denote a sequence of vectors ri. The operation z = [x,y] denotes concatenating row

vectors x and y into a new row vector z.
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2. COUPLED FACTORIZATION BASED ATTRIBUTED NETWORK EMBEDDING1

In this chapter, we first formally define the attributed network embedding problem, and then

propose an accelerated joint embedding framework - AANE, to tackle the first proposed primary

scientific need in Section 1.4.

2.1 Problem Statement

Let G = (V , E ,G) be a network, where V is a set of n nodes, and E is the set of edges. Each

edge (i, j) ∈ E is associated with a positive weight gij ∈ G. In this thesis, we focus on undirected

networks. For directed ones, we follow the work of [55] to set gij and gji equal to their maximum

value. A larger gij indicates higher similarity or stronger relationship between nodes i and j, and

gij is defined as 0 if there is no edge. The set of adjacent nodes of node i is represented as N(i).

Let A be an n×m matrix that collects all node attributes, where m is the number of node attribute

categories, and row ai describes the attributes associated with node i.

Definition 2.1. (Node Attributes) In a network, we refer the extra textual, numerical, or image

data that describes the characteristic features, records, or properties of each node as node attributes.

Examples include posts and comments in social media, paper abstracts in academic networks, and

property descriptions in protein-protein interaction networks.

Definition 2.2. (Node Proximity) It refers to the similarities between nodes defined by, (i) their

edge weights in G; (ii) their node attribute vectors, i.e., the rows of node attributes A.

Based on the terminologies explained above, we formally define the problem of attributed

network embedding as follows.

1This chapter is reprinted with permission from “A General Embedding Framework for Heterogeneous Information
Learning in Large-Scale Networks” by Xiao Huang, Jundong Li, Na Zou, and Xia Hu, 2018, ACM Transactions
on Knowledge Discovery from Data, Vol. 1, No. 1, doi.org/10.1145/3241063, Copyright 2018 by Association for
Computing Machinery.
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Dataset Nodes (n) Edges (|E|) Density Attribute Categories (m) Label (`)

BlogCatalog 5,196 171,743 1.3e-002 8,189 6
Flickr 7,564 239,365 8.4e-003 12,047 9
Yelp 249,012 1,779,803 5.7e-005 20,000 11

Table 2.1: The detailed information of the three real-world attributed networks. [36]

Given a set of n nodes connected by a network G associated with edge weights G and node

attributes A, we aim to represent each node i ∈ V as a d-dimensional vector hi, such that this

embedding representation H can preserve the node proximity both in topological structure G and

node attributes A. As a result, H could achieve better performance than G and A in terms of

advancing other learning tasks.

2.2 Data Analysis on Real-world Networks

In this section, we verify the correlation between the network and node attributes on real-world

attributed networks. Three datasets, i.e., BlogCatalog, Flickr, and Yelp are used in this work. All

of them are publicly available and have been used in several previous work [35, 54]. The statistics

of the three datasets are summarized in Table 2.1, with detailed descriptions as follows.

BlogCatalog is a blogger community, where users interact with each other and form a network.

Users are allowed to generate keywords as a short description of their blogs. These keywords are

served as node attributes. Users also register their blogs under predefined categories, and we set

them as labels. The user with no follower or predefined category has been removed.

Flickr is an online community that people could share photos. These photographers could

follow each other and form a network. We employ the tags specified on their images as the node

attribute information. We set the groups that photographers joined as labels.

Yelp2 is a social networking service, where crowd-sourced reviews about local businesses are

shared. We employ users’ friend relationships to form the network, and the bag-of-words model to

represent users’ reviews as node attributes. All local businesses are separated into eleven primary

2https://www.yelp.com/dataset_challenge/dataset

13

https://www.yelp.com/dataset_challenge/dataset


Dataset Scenarios CorrCoef Intersect p-value

BlogCatalog
Real-world 3.69e-002 42 0.00e-016

RandomMean 3.14e-005 7.32 0.18
RandomMax 1.40e-003 13 4.42e-016

Flickr
Real-world 1.85e-002 25 0.00e-016

RandomMean 2.15e-005 3.56 0.49
RandomMax 5.48e-004 9 3.37e-003

Table 2.2: Correlation between network and node attribute proximity w.r.t. the three metrics. [36]

categories, including Active Life, Arts & Entertainment, Food, Hotels & Travel, Nightlife, Amer-

ican Restaurants, Non-American Restaurants, Fast Food & Meat, Other Restaurants, Shopping,

and Services. A user may have reviewed one or several businesses. We use the categories of these

businesses as the user’s labels.

The well-received studies such as homophily and social influences [67, 112] suggest that nodes

with similar network structure would tend to have similar node attributes. We now verify this

correlation experimentally. Since there is no formal definition for matrix correlation, we employ

three types of metrics in the validation as follows.

Correlation Metrics: The first metric CorrCoef is defined as the Pearson correlation coefficient

of all pairwise affinities in the network and node attribute space. There are
(
n
2

)
node pairs in total,

and we first calculate their cosine similarities based on network structure W and set them as the

first group of variables x ∈ R1×(n
2). Then we compute the node affinities w.r.t. node attributes A

and set them as the second group y ∈ R1×(n
2). We define the Pearson correlation coefficient of

pairwise affinities x and y as CorrCoef. The second metric Intersect is defined as the number of

common node pairs in the top 104 largest affinities in x and the top 104 largest affinities in y. The

third metric p-value is defined as the p-value of the null hypothesis as follows.

HYPOTHESIS 1. There is no correlation between network affinities x and attribute affinities y.

To validate the correlation between the topological structure and node attributes, we include a
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randomly generated network as a baseline. This network has the same density as the real-world

network, with undirected edges distributed randomly. We measure the correlation between the

randomly generated network and real-world node attributes, and conduct 100 trials for each dataset.

We define the average mean as RandomMean and the best performance as RandomMax. The

results on BlogCatalog and Flickr are shown in Table 2.2. The result on Yelp is not available since

it has too many pairwise affinities to be cached on a single machine. As we can see, on both

datasets, CorrCoef and Intersect of the real-world networks are much larger than the ones of the

randomly generated networks. The p-value of real-world network is 0.00e-016 on both datasets,

which demonstrates that there is a significant relationship between the network proximity and node

attribute proximity.

2.3 Accelerated Embedding Framework - AANE

We develop an effective and efficient framework AANE to deal with the challenges, i.e., large

scale, heterogeneity, and sparsity. AANE jointly embeds the network structure and node attribute

proximity in an effective way. Figure 2.1 illustrates its basic idea. Given a network with n = 6

nodes, it first decomposes attribute affinity S into the product of H and H>. Meanwhile, it imposes

an edge-based penalty into this decomposition such that connected nodes are close to each other

in H, and the closeness is controlled by the edge weights in G. The goal is to make more similar

nodes in the network space to be closer in H. To accelerate the optimization, a distributed algorithm

is proposed to separate the original problem into 2n = 12 sub-problems with low complexity. The

first n = 6 sub-problems are designed to be independent of each other, and the same as the last six.

So all sub-problems can be assigned to c = 3 workers. In the final output, node 1 and node 3 are

represented by similar vectors [0.54, 0.27] and [0.55, 0.28], which indicates that they are similar to

each other in the original network and node attributes joint space.

2.3.1 Network topological structure modeling

To render the joint embedding representation H well-posed, AANE learns and preserves the

node proximity in both the network and node attribute space.
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Figure 2.1: AANE represents nodes as low-dimensional vectors, based on the decomposition of
attribute affinity matrix and the penalty of embedding difference between connected nodes. The
optimization is split into 2n sub-problems with low complexity, which could be solved separately
and parallelly by c workers. [36]

We first introduce how AANE models the network proximity via `2-norm to enable robust

learning. The key idea is to drive nodes with more similar topological structure or connected by

higher weights to have similar vector representations. It is based on two hypotheses [101, 28].

First, a graph-based mapping is assumed to be smooth across edges, especially for the regions of

high density [20]. Second, the cluster hypothesis [70] suggests that similar nodes tend to cluster

together. To achieve the goals, we propose the following loss function to minimize the embedding

differences between all pairs of connected nodes,

JG =
∑

(i,j)∈E

gij‖hi − hj‖2, (2.1)

where rows hi and hj are vector representations of node i and node j, and gij is the edge weight
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between the two. The key idea is that in order to minimize the penalty gij‖hi − hj‖2, a larger

weight gij is more likely to enforce the difference of hi and hj to be smaller. We employ `2-

norm as the difference metric to alleviate the negative impacts resulted from outliers and missing

data. The proposed network structure modeling enjoys several nice properties. First, it is in line

with the fused lasso [95] and network lasso [25], which could induce sparsity in the differences

of vector representations of similar nodes, and perform continuous edges selection similar to the

continuous variable selection in lasso [94]. This is in compliance with the cluster hypothesis in

graphs. Second, it can be generalized to model different types of networks, such as weighted and

unweighted networks. Hence, it could be easily applied to many real-world applications.

2.3.2 Node attribute proximity modeling

As indicated by social science theories like homophily and social influences [64, 98], attribute

information of nodes is tightly hinged with network topological structure. We now introduce how

AANE makes H also well preserve the node proximity defined by the node attributes. Motivated by

the symmetric matrix factorization [47], we propose to approximate attribute affinity matrix S with

the product of H and H>. The basic idea is to enforce the dot product of vector representations hi

and hj to be the same as corresponding attribute similarity sij . Mathematically, the loss function

is defined as,

JA = ‖S−HH>‖2
F =

n∑
i=1

n∑
j=1

(sij − hih
>
j )2, (2.2)

where affinity matrix S could be calculated by a representative similarity measure. We use cosine

similarity. The loss function JA allows AANE to be optimized in a distributed manner.

2.3.3 Joint embedding representation learning

We have implemented two loss functions JG and JA to model the node proximity in network

topological structure and node attributes. To make them complement each other towards a unified

robust and informative space, we jointly model the two types of information in the following
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optimization problem,

min
H
J = ‖S−HH>‖2

F + λ
∑

(i,j)∈E

gij‖hi − hj‖2. (2.3)

Scalar λ serves as an overall parameter that defines a trade-off between the contributions of network

and attribute information. It is also a regularization parameter that balances number of clusters [25,

62]. An intuitive explanation is that when λ is close to 0, the network topology cannot affect the

final result H, so each node can be an isolated cluster. When λ is sufficiently large, the optimal

solution will end up with same representations for all nodes, which forms a single cluster. This

allows us to tune the number of clusters continuously. This number is not specified in network

embedding, and tunability of λ is beneficial in this scenario.

2.3.4 A distributed optimization algorithm for acceleration

The proposed objective function not only jointly models network proximity and node attribute

affinity, but also has a specially designed structure that enables it to be optimized in an efficient and

distributed manner, i.e., J is separable for hi and can be reformulated as a bi-convex optimization

problem. Next, we propose an efficient algorithm to solve it.

First, we add a copy Z = H, then the first term in Eq. (2.3) can be rewritten as,

‖S−HZ>‖2
F =

n∑
i=1

‖si − hiZ
>‖2

2 =
n∑

i=1

‖s>i −Hz>i ‖2
2. (2.4)

We further reformulate Eq. (2.3) into a linearly constrained problem as follows,

min
H

n∑
i=1

‖si−hiZ
>‖2

2 + λ
∑

(i,j)∈E

gij‖hi − zj‖2,

subject to hi = zi, i = 1, . . . , n.

(2.5)

This indicates that J is separable for both hi and zi. Since `2-norm is convex, it is easy to verify

that Eq. (2.5) is bi-convex, i.e., convex w.r.t. hi when Z is fixed and convex w.r.t. zi when H is
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fixed. However, it is infeasible to obtain closed-form solutions for these 2n sub-problems because

of the linear constraint H = Z.

Second, we solve the above optimization by converting it into 2n simple update steps and one

simple matrix update step, motivated by the distributed convex optimization technique - Alternat-

ing Direction Method of Multipliers (ADMM) [25, 9]. The augmented Lagrangian [27] of the

objective function in Eq. (2.5) is formulated as follows,

L =
n∑

i=1

‖si − hiZ
>‖2

2 + λ
∑

(i,j)∈E

gij‖hi − zj‖2 +
ρ

2

n∑
i=1

(‖hi − zi + ui‖2
2 − ‖ui‖2

2), (2.6)

where rows u1, . . . ,un ∈ Rd are the scaled dual variables [9], and ρ > 0 is the penalty parameter.

The minimizer of Eq. (2.5) is then converted to the saddle point of L, which can be found by

finding optimal H, Z, and U.

Third, assume that, in iteration t, we have obtained the optimum of the three matrices as Ht,

Zt, and Ut. Then, in iteration t + 1, the calculation of Ht+1 or Zt+1 could be separated into n

independent and simple sub-problems as follows.


ht+1
i = argmin

hi

(‖si − hiZ
t>‖2

2 + λ
∑

j∈N(i)

gij‖hi − ztj‖2 + 0.5ρ‖hi − zti + ut
i‖2

2), (2.7)

zt+1
i = argmin

zi

(‖si − ziH
t+1>‖2

2 + λ
∑

j∈N(i)

gji‖zi − ht+1
j ‖2 + 0.5ρ‖zi − ht+1

i − ut
i‖2

2). (2.8)

The update rule for Ut+1 is defined as follows.

Ut+1 = Ut + (Ht+1 − Zt+1). (2.9)

We need to obtain all ht+1
i before calculating zt+1

i , and update Ut+1 after getting all the ht+1
i

and zt+1
i . However, the order of solving ht+1

i , for i = 1, . . . , n, is not fixed, since they are in-

dependent of each other. When the machine capacity is limited, si could be calculated sepa-

rately in each corresponding worker via equation si = aiA
> � (qiq), where notation � denotes the

element-wise division. Vector q is the dot product of each node attribute vector and itself, i.e.,
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q = [
√

a1a>1 , . . . ,
√

ana>n ].

2.3.4.1 Computation of ht+1
i and zt+1

i

We introduce how to solve the problems in Eqs. (2.7) and (2.8). Although the function in

Eq. (2.7) is convex, it is challenging to get the closed-form solution. We propose to approach the

optimal ht+1
i iteratively. There are several non-differentiable points at hi = ztj in Eq. (2.7), and the

classical solution is to use subgradient methods. However, these methods usually converge slowly.

Thus, we present an efficient heuristic approach to calculating ht+1
i .

We first define hk
i = ht

i as the initial point, with k = 0. Then by taking the derivative of the

function in Eq. (2.7) w.r.t. hi, and setting it to zero, we get an update rule for hk+1
i as follows.

hk+1
i = (2siZ

t+λ
∑

j∈Ñ(i)

gijz
t
j

‖hk
i − ztj‖2

+ρzti−ρut
i)×[2Zt>Zt+(λ

∑
j∈Ñ(i)

gij
‖hk

i − ztj‖2

+ρ)I]†, (2.10)

where Ñ(i) is the set of adjacent nodes of node i with representations in Zt not equal to hk
i , i.e.,

Ñ(i) = {j ∈ N(i) and ztj 6= hk
i }. Here Ñ(i) is defined to handle non-differentiable points.

We employ ‖hk
i − ztj‖2 to estimate the distance ‖hk+1

i − ztj‖2, and the monotonically decreasing

property of the update rule in Eq. (2.10) is proved in Theorem 2.3 and Corollary 2.4. It is proved

that the objective function in Eq. (2.7) is optimal if and only if hk
i = hk+1

i or hi = ztj . Thus, we

stop updating when they are close enough, and set the final one as ht+1
i . The proposed solution is

heuristic because in a few extreme cases, ht
i might equal to ztj . We could get zt+1

i in a similar way,

with N̂(i) = {j ∈ N(i) and ht+1
j 6= zki }, and the corresponding update rule of zk+1

i is defined as,

zk+1
i =(2siH

t+1+λ
∑

j∈N̂(i)

gijh
t+1
j

‖zki − ht+1
j ‖2

+ρht+1
i +ρut

i)× [2Ht+1>Ht+1+(λ
∑

j∈N̂(i)

gij

‖zki − ht+1
j ‖2

+ρ)I]†.

(2.11)

Theorem 2.3. (Monotonicity of Update Rules) For any finite number of known vectors zj ∈ R1×d

and aj , and known Q ∈ Rd×d and c ∈ R1×d, given a function of x ∈ R1×d defined as,

f(x) = xQx> + xc> +
∑

jaj‖x− zj‖2,

20



we have f(xk+1) ≤ f(xk) for any pair of {xk,xk+1} satisfying the rule as follows, with xk 6= zj ,

xk+1 = (
∑

jajbjzj − c)× (2Q +
∑

jajbjI)
†,

where bj = 1
‖xk−zj‖2 . Furthermore, f(x) is optimum if and only if xk+1 = xk or x = zj .

Corollary 2.4. The update rule in Eq. (2.10) will monotonically decrease the objective function in

Eq. (2.7), and converge to the global optimum if and only if hk+1
i = hk

i or hi = ztj .

2.3.4.2 Summary of the optimization

The distributed algorithm for optimizing the problem in AANE is described in Algorithm 1.

To have an appropriate initialization, we set the initial embedding representation Ht=0 as the left

singular vectors of G0, where G0 is a matrix that randomly samples 2d columns of G. We update

H and Z iteratively until they are approximately equivalent and no longer change much in one

iteration. The corresponding termination criterion is that primal residual rt =
∑n

i=1(ht
i − zti)

and dual residual st = −ρ∑n
i=1(zti − zt−1

i ) should be sufficiently small [9]. To find Ht+1, the

optimization process is split into n number of sub-problems. These n update steps of ht+1
i could

be assigned to c workers in a distributed way as illustrated in Figure 2.1. We initialize hk
i = ht

i and

keep applying the update rule on hk+1
i until it convergences, and the final result is set to be the new

ht+1
i . Variable matrix Zt+1 is calculated in a similar way. H and Z are nonseparable in Eq. (2.5),

and the convergence of nonseparable biconvex ADMM is still an open problem [23].

AANE enjoys several nice properties. First, it enables the n update steps for ht+1
i (or zt+1

i ),

for i = 1, . . . , n, independent of each other. Thus, in each iteration, the global coordination could

assign these tasks to available workers and collect the solutions from them without a fixed order.

Second, all these small update steps have low complexity and converge fast. In a such way, we

split the original complex embedding problem into 2n simple convex optimization sub-problems.

Third, as it is typical for ADMM [9], Algorithm 1 tends to converge to a modest accuracy in a

few iterations. The update of hk+1
i (or zk+1

i ) also converges rapidly, since the difference between
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‖hk
i − ztj‖2 and ‖hk+1

i − ztj‖2 is always small.

2.3.5 Complexity analysis

In the initialization, the time complexity for calculating singular vectors of an n by d matrix

G0 is O(d2n). We denote the number of operations required to obtain the affinity matrix S as

TS. In each sub-problem, since we only need to compute Zt>Zt once for all ht+1
i per iteration,

the update time for hi should be O(d3 + dn + d|N(i)|). Since d � n, this complexity could be

Algorithm 1: Accelerated Attributed Network Embedding - AANE [36]
Input: G, A, d, ε.
Output: d-dimensional embedding representation H.

1 Initialize G0 ← First 2d columns of G, t = 0, Ht ← Left singular vectors of G0;
2 Set Ut = 0, Zt = Ht, q = [

√
a1a>1 , . . . ,

√
ana>n ], and A← A� q;

3 repeat
4 Calculate Zt>Zt;
5 for i = 1 : n do

/* Assign ith node to available worker, do: */
6 Compute local node attribute affinity si = aiA

>;
7 Set k = 0 and hk

i = ht
i;

8 repeat
9 Update hk+1

i based on Eq. (2.10), and set k = k + 1;
10 until ‖hk

i − hk−1
i ‖2 ≤ ε;

11 Set ht+1
i = hk

i ;
12 end
13 Calculate Ht+1>Ht+1;
14 for i = 1 : n do

/* Assign ith node to available worker, do: */
15 Compute local node attribute affinity si = aiA

>;
16 Set k = 0 and zki = zti;
17 repeat
18 Update zk+1

i based on Eq. (2.11), and set k = k + 1;
19 until ‖zki − zk−1

i ‖2 ≤ ε;
20 Set zt+1

i = zki ;
21 end
22 Update Ut+1 = Ut + (Ht+1 − Zt+1) and t = t+ 1;
23 until ‖rt‖2 ≤ εpri and ‖st‖2 ≤ εdual;
24 return Ht.
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reduced toO(n). Therefore, the total time complexity of AANE isO(n+TS+ n2

c
), which equals to

O(nnnz(A) + n2

c
). It should be noted that we avoid the computation of the similarity matrix of G,

which saves lots of time. Except for the space for storing the original G and A in the coordinator,

it is easy to check that the space complexity of AANE is onlyO(n). Because the rule in Eq. (2.10)

shows that, when calculating H, only the low-dimensional matrix Z is replicated in each worker.

2.3.6 Attributed network embedding in streaming networks

The proposed framework AANE could also handle streaming networks. Given an optimal joint

embedding representation H∗, we could easily acquire the vector representations of newly included

nodes. Assume we have a new node i with network features wi and node attribute ai, we could

obtain hi readily via the objective function as follows,

hi = argmin
hi

‖si − hiĤ
>‖2

2 + 2λ
∑

j∈N(i)

wij‖hi − h∗j‖2, (2.12)

where Ĥ is a matrix that concatenates H∗ and hi. Similarly, we could make a copy zi = hi and

approach the optimal solution of Eq. (2.12) via three sub-problems as follows.



ht+1
i = argmin

hi

(‖si − hiẐt
>‖2

2 + λ
∑

j∈N(i) wij‖hi − h∗j‖2 + 0.5ρ‖hi − zti + ut
i‖2

2),

zt+1
i = argmin

zi

(‖1− zih
t+1
i

>‖2
2 + λ

∑
j∈N(i) wji‖zi − h∗j‖2 + 0.5ρ‖zi − ht+1

i − ut
i‖2

2),

ut+1
i = ut

i + (ht+1
i − zt+1

i ),

(2.13)

where Ẑt is a matrix that concatenates H∗ and zti. Based on Theorem 2.3, it is straightforward to

find the following update rules to iteratively solve the sub-problems in Eq. (2.13).
hk+1
i = (2siẐ

t + λ
∑

j∈N(i)

wijh
∗
j

‖hk
i−h∗j‖2

+ ρzti − ρut
i)× [2Ẑt

>
Ẑt + (λ

∑
j∈N(i)

wij

‖hk
i−h∗j‖2

+ ρ)I]†,

zk+1
i = (2ht+1

i + λ
∑

j∈N(i)

wijh
∗
j

‖zki−h∗j‖2
+ ρht+1

i + ρut
i)× [2ht+1

i
>
ht+1
i + (λ

∑
j∈N(i)

wij

‖zki−h∗j‖2
+ ρ)I]†.

(2.14)
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2.4 Experiments

In this section, we empirically evaluate the effectiveness and efficiency of the proposed frame-

work AANE. We aim at answering two questions as follows. (1) How effective is the embedding

representation learned by AANE compared with other learning methods on real-world attributed

networks? (2) How efficient is AANE compared with the state-of-the-art methods?

2.4.1 Baseline methods

AANE is compared with three categories of baseline methods. First, to evaluate the contri-

bution of incorporating node attributes, two scalable network embedding methods are used for

comparison, i.e., DeepWalk and LINE. Second, to study the contribution of incorporating the net-

work, we include two methods for modeling pure node attributes, i.e., PCA and Spectral. Third,

to investigate the effectiveness and efficiency of AANE, we compare it with two state-of-the-art

attributed network learning methods, i.e., LCMF and MultiSpec. The detailed descriptions of these

methods are listed as follows.

• DeepWalk [80]: It involves language modeling techniques to analyze the truncated random

walks on a graph. It embeds the walking tracks as sentences and nodes as words.

• LINE [91]: It embeds the network into a latent space by sampling both one-hop and two-hop

neighbors of each node. It is one of state-of-the-art scalable network embedding methods.

• AANE_Net: It treats the second-order network proximity as the node attributes, and employs

AANE to incorporate it into the first-order proximity. Node attributes A are not used in it.

• PCA [43]: It is a classical dimensionality reduction technique. It takes the top d principal

components of attribute matrix A as the learned representation.

• Spectral [101]: It embeds node attributes via two steps. First, it constructs a new graph

with the cosine similarity of two nodes’ attribute vectors as the corresponding edge weight.

Second, it performs normalized spectral embedding on the constructed graph to learn H.
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• LCMF [116]: It learns a low-dimensional representation from linkage and content informa-

tion by carrying out a joint matrix factorization on them.

• MultiSpec [48]: It treats network structure and node attributes as two views, and embeds

them jointly by co-regularizing spectral clustering hypotheses across two views.

• AANE_Stream: Nodes in the test group arrive one by one. It employs the objective function

in Eq. (2.12) to calculate the joint embedding representations of the streaming nodes.

2.4.2 Experimental setup

Following the widely adopted way of validating network embedding [80, 91], we evaluate

AANE and baseline methods on the node classification task [89, 116]. The goal is to predict which

category or categories a new node belongs to based on its low-dimensional representation and the

learned classifier. We now introduce the experimental settings in detail.

We employ 5-fold cross-validation, i.e., randomly separate the entire nodes into a training

group (Wtrain, Atrain, Ytrain) and a test group (Wtest, Atest, Ytest), where Y denotes the labels. The

edges between training group and test group are kept. To investigate the performance of a method,

we apply it to both groups and learn vector representations H for all nodes, including Htrain and

Htest. Since there are multiple label categories, we build a binary SVM classifier for each category

based on Htrain and Ytrain. At last, we perform the classification based on Htest and the learned

SVM classifiers. The labels in Ytest serve as the ground truth.

The classification performance is measured via two commonly used evaluation criteria, micro-

average and macro-average [41]. F-measure is a widely used metric for binary classification.

Micro-average is the harmonic mean of average precision and average recall, i.e.,

Micro-average =

∑`
i=1 2TP(i)∑`

i=1(2TP(i) + FP(i) + FN(i))
, (2.15)

where TP(i), FP(i), and FN(i) denote the numbers of true positives, false positives, and false nega-

tives in the ith label category correspondingly. Macro-average is defined as an arithmetic average

25



BlogCatalog Flickr Yelp-sub

Training set percentage 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%
nodes for embedding 1,455 2,079 3,118 5,196 2,118 3,026 4,538 7,564 13,945 19,921 29,881 49,802

Micro-
average

DeepWalk 0.491 0.551 0.611 0.672 0.312 0.373 0.465 0.535 0.302 0.310 0.318 0.350
LINE 0.433 0.545 0.624 0.684 0.259 0.332 0.421 0.516 0.230 0.243 0.264 0.294

AANE_Net 0.556 0.628 0.690 0.747 0.315 0.397 0.496 0.626 0.369 0.373 0.274 0.247
PCA 0.695 0.782 0.823 0.857 0.508 0.606 0.666 0.692 0.667 0.674 0.681 N.A.

Spectral 0.717 0.791 0.841 0.869 0.698 0.771 0.813 0.846 0.670 0.683 N.A. N.A.
LCMF 0.778 0.849 0.888 0.902 0.576 0.676 0.725 0.749 0.668 0.680 0.686 N.A.

MultiSpec 0.678 0.788 0.849 0.896 0.589 0.720 0.800 0.859 0.654 0.667 N.A. N.A.
AANE 0.841 0.878 0.913 0.932 0.740 0.811 0.854 0.885 0.679 0.694 0.703 0.711

AANE_Stream 0.770 0.822 0.887 0.914 0.568 0.726 0.816 0.859 0.554 0.577 0.665 0.691

Macro-
average

DeepWalk 0.489 0.548 0.606 0.665 0.310 0.371 0.462 0.530 0.139 0.159 0.215 0.275
LINE 0.425 0.542 0.620 0.681 0.256 0.331 0.418 0.512 0.165 0.173 0.193 0.227

AANE_Net 0.550 0.622 0.685 0.741 0.313 0.396 0.495 0.624 0.287 0.272 0.156 0.141
PCA 0.691 0.780 0.821 0.855 0.510 0.612 0.671 0.696 0.591 0.599 0.605 N.A.

Spectral 0.714 0.788 0.838 0.867 0.695 0.767 0.810 0.843 0.610 0.626 N.A. N.A.
LCMF 0.776 0.847 0.886 0.900 0.585 0.683 0.729 0.751 0.589 0.605 0.612 N.A.

MultiSpec 0.677 0.787 0.847 0.895 0.589 0.722 0.802 0.859 0.578 0.589 N.A. N.A.
AANE 0.836 0.875 0.912 0.930 0.743 0.814 0.852 0.883 0.630 0.645 0.656 0.663

AANE_Stream 0.770 0.815 0.884 0.912 0.567 0.727 0.815 0.858 0.503 0.538 0.613 0.646

Table 2.3: The classification performance of different methods on different datasets with d = 100.
Training set percentage indicates the percentage of nodes in training group that are used for em-
bedding. Nodes for embedding denotes the total number of nodes in the test group and nodes in
the training group that are used. [36]

of F-measure of all ` label categories, i.e.,

Macro-average =
1

`

∑̀
i=1

2TP(i)

2TP(i) + FP(i) + FN(i)
. (2.16)

We follow suggestions of the original papers to set the parameters of baselines. If it is not

specified, the embedding dimension d is set to be 100. All experimental results are the arithmetic

average of ten test runs. We ran the experiments on a Dell OptiPlex 9030 i7-16GB desktop.

2.4.3 Effectiveness evaluation

To investigate the impacts of attribute information and how much it can improve the embedding

representation, we compare AANE with all baseline methods. We also vary the nodes used for

training as {10%, 25%, 50%, 100%} of the entire training group to evaluate the effect brought

by different sizes of training data. The classification performance w.r.t. training percentage is
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Training Set Percentage 10% 25% 50% 100%
# nodes for embedding 69,723 99,605 149,407 249,012

Micro-
average

DeepWalk 0.324 0.345 0.366 0.368
LINE 0.295 0.313 0.336 0.354

AANE 0.698 0.709 0.711 0.714

Macro-
average

DeepWalk 0.239 0.254 0.266 0.260
LINE 0.216 0.236 0.259 0.279

AANE 0.649 0.659 0.660 0.665

Table 2.4: The classification performance of different scalable embedding methods on Yelp with
d = 100, where baseline methods PCA, LCMF, and MultiSpec are infeasible. [36]

presented in Table 2.3. Since neither of existing attributed network learning methods is practicable

on the Yelp dataset, we randomly select 20% of it and set as a new dataset, i.e., Yelp-sub, such that

we are able to compare the effectiveness of different methods on it. Results of AANE on original

Yelp dataset are shown in Table 2.4.

From the results, we have four major observations as follows. First, by taking advantage of

node attributes, LCMF, MultiSpec, and AANE all achieve significantly better performance than

network embedding methods on all datasets. For example, in BlogCatalog results, we can discover

that incorporating attribute information allows AANE to achieve 38.7% gain over DeepWalk and

36.3% gain over LINE in terms of Micro-average score. Also, by performing joint embedding,

AANE consistently outperforms PCA and Spectral on all datasets. For example, on BlogCatalog,

AANE achieves 8.8% of improvements than PCA. Second, with the proposed formulation, AANE

consistently outperforms LCMF and MultiSpec. For instance, on Flickr, AANE achieves 18.2%

of improvements than LCMF, which can be explained by the fact that latent features learned by

decomposing network matrix and attribute matrix are heterogeneous, and it is challenging to com-

bine them. In addition, LCMF and MultiSpec are infeasible on the datasets Yelp. For instance,

MultiSpec becomes impracticable as the number of nodes increases to 29,881, due to the high

computational and memory requirement of eigen-decomposition. Third, when only network infor-

mation is used, AANE_Net still outperforms DeepWalk and LINE on BlogCatalog and Flickr. For

instance, on Flickr, AANE_Net achieves a gain of 17.0% over DeepWalk. AANE_Net does not
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Figure 2.2: The augmented Lagrangian L in AANE w.r.t. the iteration number. [36]
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Figure 2.3: The running time of LCMF, MultiSpec and AANE when using a single thread. [36]

BlogCatalog (sec) Flickr (sec) Yelp-sub (sec)

c = 1 26.301 33.751 1065.033
c = 2 14.233 (−45.9%) 17.510 (−48.1%) 581.544 (−45.4%)

Table 2.5: The running time of AANE w.r.t. the number of workers c on a dual-core processor. [36]

perform well on Yelp-sub since its network information is too noisy.

We further vary the percentage of the training group that is used for training. As shown in

Tables 2.3 and 2.4, similar observations are made. LCMF, MultiSpec, and AANE outperform the

two pure network embedding methods. AANE consistently achieves better performance than all

baselines. We find that MultiSpec may perform worse than PCA. For instance, on Yelp-sub, PCA

achieves a gain of 20.6% over MultiSpec when training percentage is 10%. One-tailed t-test results

show that AANE is statistically significantly better (with p-value� 0.01) than all the baselines on

all datasets. The p-value on BlogCatalog and Flickr are smaller than 9.5× 10−14 and 1.6× 10−12.
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2.4.4 Efficiency evaluation

To study the efficiency of the proposed framework AANE, we compare it with the two joint

learning methods. Empirical results show that a near optimal solution of J is enough to guarantee

H to be an informative embedding representation. Figure 2.2 shows the objective function J in

AANE as a function of the iteration number on all the three datasets. As we can see, J decreases

rapidly in the first two iterations. Therefore, in practice, only a few iterations are required for our

framework AANE. If it is not specified, in the experiments, we stop the iteration at the stopping

points shown in Figure 2.2. It should be noted that J might not decrease monotonically because

of the non-differentiable points at hi = ztj in Eq. (2.7).

The computation time in logarithmic scale as a function of the number of input nodes on the

three datasets are shown in Figure 2.3. The blue, red, and yellow dash-dot curves show the per-

formance of LCMF, MultiSpec, and AANE respectively. From the results, we observe that AANE

takes much less running time than LCMF and MultiSpec consistently. As the number of nodes

increases, the performance difference raises up. The third subfigure shows that LCMF and Multi-

Spec have larger growth rates than AANE. They become infeasible when the number of nodes is

greater than 49,802 and 29,881 respectively, due to the high computational cost and memory re-

quirement of matrix factorization and eigen-decomposition. While the three methods are running

within a single thread for a fair comparison, AANE could be implemented in multi-thread way as

illustrated in Figure 2.1. This strategy could further improve the efficiency of AANE. We demon-

strate the running time of AANE w.r.t. different numbers of workers c on a dual-core processor

in Table 2.5. As we can see, on all the three datasets, the computation time of AANE is reduced

by almost 50% when c is increased from 1 to 2. When c = 1, the running time on BlogCatalog

and Flickr in Table 2.5 is larger than the one in Figure 2.3. It is because it takes extra time for

the multi-thread version of AANE to set up the coordinator and workers. When n is large enough,

e.g., on Yelp-sub, the running time with c = 1 in Table 2.5 is the same as the one in Figure 2.3. In

summary, all these observations demonstrate the efficiency and scalability of AANE.
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Figure 2.4: Impacts of regularization parameter λ and penalty parameter ρ on AANE. [36]
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Figure 2.5: The classification performance of all methods on BlogCatalog and Flickr w.r.t. different
dimension d. [36]

2.4.5 Parameter analysis

We study the impacts of important parameters, λ, ρ, and d. As discussed in Section 2.3.3, λ in

AANE balances the contributions of network and node attributes. Penalty parameter ρ determines

the amount of penalty from the linear constraint H = Z. To investigate the impacts of λ and ρ,

we vary λ from 10−6 to 104 and ρ from 0.1 to 20. Figure 2.4 shows the performance in terms of

Macro-average as a function of λ and ρ on BlogCatalog and Flickr. We omit the results on Yelp

since they are similar.

When λ = 0, network information has no impact as if all nodes are isolated. As λ increases,
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AANE starts to cluster nodes according to the topological structure, so the performance keeps

improving. As shown in Figure 2.4, performance on BlogCatalog and Flickr achieves optimal

when λ is close to 0.1. The performance decreases when λ is too large, since large λ tends to drive

all nodes to have the same vector representation. The penalty parameter ρ has a limited impact on

the performance of our framework AANE.

To study the impact of embedding dimension d, we vary it from 20 to 180. The classification

performance of all methods in terms of Micro-average w.r.t. d is shown in Figure 2.5. We omit the

results on Yelp since they are similar. From the results, we discover that observations made above

hold undeviatingly as d varies. DeepWalk and LINE are always inferior to AANE and the two

attributed network learning methods. AANE consistently outperforms all baseline methods. By

increasing d, the performance of all methods first increases and then keeps stable. This shows that

the low-dimensional representation performs well in capturing most of the meaningful information.

2.4.6 Effectiveness evaluation on streaming networks

AANE could also be applied to streaming networks. We make the nodes in the test group come

one by one, and denote AANE on such streaming attributed network embedding as AANE_Stream.

Its performance regards to different training set percentages is shown in Table 2.3. From the

results, we observe that AANE_Stream achieves a comparable performance with the batch mode,

i.e., AANE, on all the three datasets. For example, on Flickr, AANE_Stream performs only 2.8%

worse than AANE when the training set percentage is 100%. The performance of AANE_Stream

on Yelp-sub is worse than PCA since AANE relies on the topological structure to infer the vector

representations of new nodes, while the network information of Yelp-sub is noisy.
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3. JOINT RANDOM WALKS BASED ATTRIBUTED NETWORK EMBEDDING1

Random walks are widely adopted in network analysis. It converts geometric structures into

structured sequences while alleviating the issue of sparsity. However, it is unclear how random

walks could be developed for attributed networks towards an effective joint information extraction.

Node attributes make the node interactions more complicated and are heterogeneous with respect

to topological structures. In this chapter, we target at leveraging joint random walks to address

the attributed network embedding problem. In such a way, embedding algorithms with differ-

ent theoretical foundations would have different properties. Their performances vary in different

real-world networks. We now introduce the second joint embedding framework - FeatWalk. The

notations and definition of attributed network embedding are the same as Chapter 2.

3.1 Random Walks on All Features - FeatWalk

The network G and node attributes A are collected from different aspects. They are not only

mutually dependent on and complement each other [86], but also heterogeneous with each other.

To incorporate the heterogeneous information, a commonly used approach [113] is to calculate the

node proximity based on each source respectively, and learn H from all node proximities jointly.

It could effectively tackle the heterogeneity since node proximities are homogeneous. It should be

noted that the proposed framework AANE in Chapter 2 also follows this effective approach.

To jointly embed the network G and node attributes A, we propose an advanced attributed

network embedding framework - FeatWalk. The node proximity defined by edge weights in G are

homogeneous with the one defined by the similarity matrices of A. FeatWalk achieves scalabil-

ity by avoiding the computation of node similarities, and provides a distributed way to simulate

similarity-based random walks among nodes. Figure 3.1 illustrates its main idea. FeatWalk first

learns the node proximity defined by G via random walks and the one defined by A via AttriWalk.

1This chapter is reprinted with permission from “Large-Scale Heterogeneous Feature Embedding” by Xiao Huang,
Qingquan Song, Fan Yang, and Xia Hu, 2019, Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
33, No. 1, Copyright 2019 by Association for the Advancement of Artificial Intelligence.
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Figure 3.1: FeatWalk projects the network and node attributes into homogeneous node se-
quences. [39]

Then it jointly incorporates them into a unified embedding representation H. We conduct random

walks on G and learn a set of node sequences QG. As shown in Figure 3.2, to model the node

proximity in A, an intuitive solution is to construct a new graph S with node similarities as edge

weights, and then perform random walks on S to learn a set of sequencesQA. However, S is often

dense because of the common node attribute categories. As n keeps increasing, it would become

too expensive to be manipulated. We propose a distributed algorithm - AttriWalk, which could

obtain the same results as the intuitive solution but avoid the computation of S. The learned QA

consists of node indices that record the walking trajectories such as [1, 6, 4, 2, 5]. QA preserves

the information in A. Finally, QG and QA are homogeneous. By considering the node indices as

words and sequences as sentences, a scalable word embedding technique is applied toQG andQA

to learn a joint representation H.

3.1.1 Network topological structure modeling

Given the network G, we model its node proximity via conducting truncated random walk on

it. We set each walk as the same length L, and collect all walking trajectories as a set of node

sequences QG. The probability of walking from node i to j is determined by the edge weight, i.e.,

P (i→ j) =
gij∑n
k=1 gik

. (3.1)
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Figure 3.2: To avoid the computation of similarity matrices, FeatWalk performs equivalent random
walks through node attributes, named AttriWalk. [39]

QG could capture the local node proximity, because as the number of learned sequences keeps

increasing, the probability of index j follows index i in QG would approach to P (i → j). Thus,

learning an embedding representation based on the indices’ co-occurrence probabilities is equiva-

lent to the one based on the nodes’ linking probabilities.

We set the total number of walks assigned to model G as WG. To make sure local proximities

of all nodes could be sampled, we select each node as the initial index in turns. However, the

number of random walks using node i as an initial index, i.e., bi, is not fixed. We assign it based

on the complexity of corresponding node, which is defined as follows,

bi =
nnz(gi)WG∑n
p=1 nnz(gp)

, (3.2)

We design the function in (3.2) based on two assumptions. First, nodes with more edges would

require more random walks to simulate its linking probabilities. For example, if in G, nodes 4 and

6 have four and one edges respectively. We need to walk from node 4 at least four times and from

node 6 at least one time to capture their relationships with all neighbors. Second, in a network,

nodes with more edges tend to be more important [70]. To make the local proximity of important

nodes well-preserved, we sample more sequences for them. Thus, we assign the numbers of walks

{bi} based on the complexity.
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3.1.2 Node attribute proximity modeling

As shown in Figure 3.2, to model the node proximity defined by A, an intuitive solution is to

compute its similarity matrix to construct a new graph S, and perform random walks on S. The

weight of edge between nodes i and j in S is defined as the similarity between ai and aj . However,

this intuitive solution has several problems. First, as n increases, the size of S would increase

exponentially. The calculation, storage, and manipulations of S would become expensive. Second,

S is often quite dense, which makes the random walks on S inefficient. For example, when creating

node attributes for Twitter users based on their tweets, commonly used words such as “good” and

“think” would make S close to a clique. Then the time complexity of sampling a neighbor from

si would become O(n) [17], which is expensive. Therefore, we propose a distributed algorithm -

AttriWalk, which solves these problems by avoiding the computation of S.

3.1.2.1 Random walks for node attributes - AttriWalk

Since the computation of and operations on S are expensive, we design an alternative way to

simulate the similarity-based random walks on S, with details as follows.

I. We normalize the node attribute matrix A. We use `2 norm to normalize each row of A and

get Ã. Since it is hard for random walks to simulate the probabilities with small values, we remove

the small elements in Ã, i.e., elements smaller than βMean(Ã), and get Â. Mean(Ã) denotes the

mean value of all elements in Ã and β is a threshold value. We use `1 norm to normalize each row

of Â and get a new matrix Ā, i.e.,

āik =
âik∑m
p=1 âip

, (3.3)

where m is the total number of node attribute categories in A.

II. We collect all the m node attribute categories as a set, denoted as U . By considering

each node attribute category δk ∈ U as a node, we could define a new bipartite network as

A , (V ,U , EA), where EA represents the corresponding edge set. There exists an edge between

nodes i ∈ V and δk ∈ U , if node i contains attributes δk. The weight of this edge is defined as āik.

Assume that currently we have jumped to a node i ∈ V . As illustrated in Figure 3.2, we jump to a
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node δk ∈ U with a probability,

P (i→ δk) =
āik∑m
p=1 āip

= āik. (3.4)

III. Given that δk is selected, we jump to a node j ∈ V , with a probability defined as,

P (δk → j) =
ājk∑n
q=1 āqk

. (3.5)

In such a way, we accomplish the walk from node i to j. Similar to the random walks on G,

the length of each walk is set as L. The number of walks using i as the initial index is defined as,

b̂i =
nnz(āi)WA∑n
p=1 nnz(āp)

. (3.6)

3.1.2.2 Theoretical analysis of AttriWalk

The output of AttriWalk is equivalent to the output of random walks on a special node proximity

S̄. The proof of Theorem 3.1 is in Appendix A.

Theorem 3.1. In AttriWalk, the probability of walking from node i ∈ V to another node j ∈ V

through any attribute categories, follow a similarity matrix S̄ defined as follows.

S̄ = ĀDĀ>, (3.7)

where D is a diagonal matrix, with dkk = 1∑n
q=1 āqk

.

3.1.3 Joint embedding with all random walks

All sequences in QG and QA are homogeneous with each other. We put them together to

jointly perform the node proximity learning. Let W be the total number of sequences that we

could sample. To balance the contributions of G and A, WG and WA are defined as,

WG = αW and WA = (1− α)W. (3.8)
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By applying a scalable word embedding method [69], we could learn a joint embedding represen-

tation H from QG and QA. Word embedding [79] aims to map each word in a set of sentences

into a low-dimensional vector, so that words with similar semantic meaning would have similar

vector representations. Since massive amounts of documents are available in practice, many scal-

able word embedding algorithms such as word2vec [69] and GloVe [79] have been proposed. We

could take advantage of these efficient algorithms to learn joint low-dimensional representations

of nodes from QG and QA, by considering the nodes as words in sentences.

It is straightforward to extend FeatWalk to multiple networks and multiple types of node at-

tributes. We could perform random walks on each network and AttriWalk on each type of node

attributes, to learn multiple sets of homogeneous node sequences. Then a joint H could be learned

from these sets of node sequences.

3.1.4 Complexity analysis

Let T denote the number of operations required to obtain H based on theW learned sentences.

In the tasks of sampling from a discrete probability distribution, we use the alias method [17]. The

time complexity of the setup of alias method isO(nnz(G)) orO(nnz(A)) and each sampling takes

O(1) time. Then, the time complexity of modeling G and A isO(nnz(G)+nnz(A)+WL). Thus,

the time complexity of generating all sequences is linear with the numbers of nonzero entries in G

and A. The total time complexity of FeatWalk is O(nnz(G) + nnz(A) + WL + T ). It should be

noted that the processes of learning any two sequences are independent of each other. We could

implement them in parallel to further accelerate FeatWalk.

3.2 Experiments

We now empirically validate the efficiency and effectiveness of FeatWalk. There are three

major questions we aim to answer. (1) How efficient is FeatWalk in performing heterogeneous

information embedding compared with the state-of-the-art methods? (2) How effective is the rep-

resentations learned by FeatWalk compared with other embedding methods in applications such

as classification? (3) What are the impacts of parameters α, the window size, L, the number of
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sentences per node W/n, and d on FeatWalk?

3.2.1 Three real-world datasets

The three real-world datasets that we employed in the experiments are all publicly available,

including Flickr, ACM, and Yelp. We have introduced Flickr and Yelp in Chapter 2.

ACM [92]: 48,579 papers published in ACM before 2016 are utilized as nodes. We construct

an undirected G based on the citation links, with 288,374 edges in total. We apply the bag-

of-words model to represent the abstracts as node attributes, with m = 10,000. All papers are

from nine areas as follows. Artificial Intelligence (AAAI, IJCAI, etc.), Computer Vision (TPAMI,

CVPR, etc.), Computational Linguistics (ACL, EMNLP, etc.), Data Mining (KDD, WSDM, etc.),

Databases (VLDB, TKDE, etc.), Human Computer Interaction (CHI, UIST, etc.), Information Re-

trieval (CIKM, SIGIR, etc.), Machine Learning (ICML, COLT, etc.), Robotics (ICRA, IROS, etc.).

We employ areas as labels.

3.2.2 Baseline methods

To study the performance of FeatWalk, we compare it with three categories of baselines. First,

to investigate the impact of node attributes, we include three single feature embedding methods,

i.e., NMF, Spectral, FeatWalk_A. Second, to study the impact of the networks, we include two

network embedding methods, i.e., DeepWalk and LINE. Third, to analyze the efficiency and effec-

tiveness of FeatWalk, we include three state-of-the-art heterogeneous feature embedding methods,

i.e., LCMF, MultiSpec, and AANE, and a variation of FeatWalk named w/o_FW. Several baselines

have been introduced in Chapter 2, including DeepWalk, LINE, MultiSpec, and AANE.

• NMF [77]: It is a scalable version of non-negative matrix factorization, optimized by the

hierarchical alternating least squares algorithms. It reduces the dimension of A to learn H.

• Spectral [101]: It calculates the cosine similarities between vectors ai to construct a new

graph, and applies spectral embedding on it to learn H.

• FeatWalk_A: It learns the representation H only from node attributes A via FeatWalk.
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• w/o_FW: FeatWalk without using AttriWalk. Instead, it calculates S directly, and performs

random walks on S.

3.2.3 Experimental settings

We use the same experimental settings as Chapter 2. We use the original papers’ default settings

to determine the parameters of baselines. FeatWalk_A and w/o_FW use the same parameters as

FeatWalk. If it is not specified, d is set as 100 and 100% of the nodes in the training group are

used. We performed ten test runs and used the arithmetic average as the final experimental results.

3.2.4 Efficiency of FeatWalk

To investigate the first question proposed at the beginning of this section, we compare Feat-

Walk with the three state-of-the-art heterogeneous feature embedding methods and w/o_FW. The

running time of all methods as a function of the number of nodes n on Flickr, ACM, and Yelp is

shown in Figure 3.3.

From the results in Figure 3.3, we have three major observations. First, the running time of

FeatWalk is almost linear to n, which demonstrates its scalability. For example, in Figure 3.3c,

the slope of the green curve (FeatWalk) remains invariable as n increases. As n keeps increasing,

LCMF, MultiSpec, and w/o_FW run out of time since their running time increase exponentially.

Second, the distributed sampling algorithm AttriWalk has significantly accelerated FeatWalk and

made it scalable. When n is small, as shown in Figure 3.3a, w/o_FW has almost the same running

time as FeatWalk, since the manipulations of similarity matrix S are cheap at this time. However,

when n keeps increasing, as shown in Figure 3.3b, the running time of w/o_FW increases expo-

nentially until it runs out of time. FeatWalk has significantly less running time than w/o_FW on

both ACM and Yelp. Third, FeatWalk always has the least running time when n is large. When

n is small, AANE might have less running time than FeatWalk. FeatWalk has almost the same

running time as AANE on Flickr, and is always faster than AANE on ACM. On Yelp, FeatWalk

needs more running time than AANE when N < 82,000, but it becomes faster than AANE when

N ≥ 82,000 since it is almost linear to n.
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(a) Flickr (b) ACM

(c) Yelp (d) Number of workers

Figure 3.3: The running time of FeatWalk and different joint embedding methods. [39]

The running time of FeatWalk can be further reduced by using the multi-thread implementation.

Figure 3.3d shows the relative running time of FeatWalk as a function of the number of workers

c on all datasets. From the results, we have three observations. First, FeatWalk becomes more

efficient as c increases. Second, as c increases from 1 to 2, the running time decreases less than

50%. It is because the multi-thread implementation only accelerates the learning of sequences, not

the word embedding process. Third, the running time of FeatWalk on Flickr keeps increasing when

c ≤ 5. It is because n = 7,564 is relatively small and it takes extra time for the communications

between the coordinator and workers. It should be noted that word2vec can be replaced by other

more efficient algorithms to make FeatWalk faster.
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Flickr ACM Yelp-sub Yelp

Training 25% 50% 100% 25% 50% 100% 25% 50% 100% 10% 25% 50% 100%
# Instances 3,026 4,538 7,564 19,432 29,147 48,579 19,921 29,881 49,802 69,723 99,605 149,407 249,012

NMF 0.629 0.718 0.773 0.653 0.660 0.664 0.680 0.686 0.688 0.678 0.692 0.694 0.689
Spectral 0.771 0.813 0.846 0.688 0.700 N.A. 0.683 N.A. N.A. N.A. N.A. N.A. N.A.

FeatWalk_A 0.803 0.841 0.868 0.676 0.675 0.667 0.701 0.710 0.714 0.706 0.691 0.703 0.699

DeepWalk 0.373 0.465 0.535 0.576 0.630 0.684 0.310 0.318 0.350 0.324 0.345 0.366 0.368
LINE 0.332 0.421 0.516 0.549 0.624 0.693 0.243 0.264 0.294 0.295 0.313 0.336 0.354

LCMF 0.676 0.725 0.749 0.690 0.706 N.A. 0.680 0.686 N.A. N.A. N.A. N.A. N.A.
MultiSpec 0.720 0.800 0.859 0.709 0.719 N.A. 0.667 N.A. N.A. N.A. N.A. N.A. N.A.

AANE 0.811 0.854 0.885 0.701 0.715 0.722 0.694 0.703 0.711 0.698 0.709 0.711 0.714
FeatWalk 0.831 0.865 0.893 0.722 0.738 0.751 0.700 0.710 0.717 0.708 0.691 0.704 0.701

Table 3.1: Classification performance of FeatWalk and baselines in terms of micro-average. [39]

3.2.5 Effectiveness of FeatWalk

To answer the second proposed question, we compare the classification performance of all

methods, which are listed in Tables 3.1. From the results, we have three major findings. First,

FeatWalk_A performs better than single feature embedding methods, i.e., NMF and Spectral. By

taking advantage of the extra network information, FeatWalk further improves the performance.

Second, by incorporating the heterogeneous information, FeatWalk outperforms all network em-

bedding methods, i.e., DeepWalk and LINE. For example, FeatWalk achieves 9.8% of improve-

ments than DeepWalk on ACM. Third, on all datasets except Yelp, FeatWalk achieves better per-

formance than all heterogeneous feature embedding methods, i.e., LCMF, MultiSpec, and AANE.

For example, on Flickr, FeatWalk achieves a gain of 0.9% over AANE. It demonstrates that the

way that FeatWalk has used to incorporate the heterogeneous information is effective.

To study the performance of all methods w.r.t. different training set percentages, i.e., the per-

centage of instances in the training group (among the four folds in the cross-validation) that have

been used, we vary it as {25%, 50%, 100%}. The results on the four datasets are shown in Ta-

bles 3.1. From the results, we observe that the aforementioned findings hold consistently as the

training set percentage increases. FeatWalk undeviatingly outperforms all baselines on all datasets

except Yelp. On Yelp, the performance of FeatWalk decreases when the training set percentage

increases from 10% to 25%. It is because the sequence sets reach the memory limit and an online

version of word2vec is used to learn H.

41



(a) α and window size (b) Walk length L and W/n (c) Representation dimension d

Figure 3.4: The impacts of parameters α, window size, walk length L, number of sentences per
instance W/n, and d on FeatWalk. [39]

3.2.6 Parameter analysis

We now study the third proposed question. Performance of FeatWalk on Flickr as a function

of the network weight α and window size, a function of L and W/n, and a function of d are shown

in Figures 4.3a, 4.3b, and 4.3c. Results on other datasets are similar, so we omit them.

First, we vary α from 0 to 1 and the window size from 1 to 10. When α = 0, only G is used

to learn H. When α = 1, only A is used to learn H. The window size denotes the maximum

distance that is used to define context words in word2vec. From the results in Figure 4.3a, we

observe that FeatWalk achieves the best performance when α = 0.62, i.e., when the contributions

of A and G are balanced. When α is fixed, the performance of FeatWalk keeps stable as the

window size increases from 1 to 10. Second, we vary the walk length L as from 2 to 60 and the

number of sentences per instance W/n from 2 to 20. From the results in Figure 4.3b, we find that

the performance of FeatWalk keeps increasing as the product of L and W/n increases, and keeps

stable when the product is sufficiently large. Third, we vary d as {20, 60, 100, 140, 180}. From the

results in Figure 4.3c, we observe that, as d increases from 20 to 180, the performance of FeatWalk

keeps stable and is always better than all baselines.

42



4. GRAPH NEURAL NETWORKS BASED ATTRIBUTED NETWORK EMBEDDING1

Among numerous network analysis techniques, deep network embedding architectures espe-

cially graph convolutional networks (GCN) have attracted wide attention [46, 10]. The superior

empirical performance and their flexible parametrized architectures motivate us to couple them

with random walks to conduct more effective node representation learning on attributed networks.

Recent studies [26, 110] have attempted to exploit GCN to incorporate random walks into deep

network embedding. However, they only adopt conventional random walks and the aggregation

operation in GCN does not take the node order information into consideration [45].

In this chapter, we aim to perform effective random walks on attributed networks and con-

volve the extracted information via deep learning techniques for node representation learning.

Besides the three challenges introduced in Chapter 1, there are two more challenges. First, node

attributes are heterogeneous with respect to the topological structures [36]. Simply plugging them

into existing random-walk-based models might burden the computation while downgrading the

performance. Second, to fully take advantage of the structured walking sequences learned from

attributed networks, an embedding algorithm that accords with walking would be needed. Thus,

we aim to tailor deep embedding architectures towards coupling with attributed random walks and

preserving the nice walking properties.

4.1 Problem Statement

The notations and definition of attributed network embedding are the same as Chapter 2. Given

the nice properties of random walks such as being robust to sparsity and in line with the spectral

segmentation, we propose to take advantage of random walks to boost ANE.

Definition 4.1. (Random-walk-based Attributed Network Embedding) The goal is to develop

a framework that accords with the data characteristics of attributed network embedding, including
1This chapter is reprinted with permission from “Graph Recurrent Networks with Attributed Random Walks” by

Xiao Huang, Qingquan Song, Yuening Li, and Xia Hu, 2019, Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Pages 732–740, Copyright 2019 by Association for Computing
Machinery.
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Figure 4.1: GraphRNA defines a unified walking mechanism AttriWalk, to enable joint random
walks within network and node attributes, and a novel graph recurrent neural architecture to simu-
late attributed node interactions within the model. [38]

complex node interactions, nonlinear correlations, and heterogeneous information sources, while

maintaining the nice properties brought by random walks.

4.2 Attributed Walks Based Embedding - GraphRNA

To effectively perform random-walk-based attributed network embedding, we propose a novel

deep embedding framework named GraphRNA. The core idea is to perform joint random walks

on attributed networks to model the attributed node interactions, and involve a recurrent neural

architecture to embed the nonlinear correlations. Figure 4.1 illustrates the details of GraphRNA.

We roughly separate this unified framework into three components to introduce. First, we define

a unified walking mechanism to sample the complex attributed node interactions. As illustrated

in Figure 4.1, to enable joint walks within the network and node attributes, we construct a bi-

partite network A based on node attributes. Nodes would have some probability of jumping to

attribute categories, which increases the diversity of the walks. As a result, we convert the com-

plex attributed node interactions into a series of informative node index sequences T . Second,

we develop an effective deep architecture named graph recurrent networks to perform embedding

based on T . It allows node representations to interact within the model in the same way as nodes

interact in the original network G. We learn a d-dimensional vector representation for each node

index in each sequence in T . Third, for each node i ∈ V , we sample a small number of sequences
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that all take i as the starting node, denoted as set τi. To compute the final embedding representation

of i, we apply a pooling method to fuse all vector representations of node indices in τi.

4.2.1 Attributed random walks - AttriWalk

We investigate to perform random walks on attributed networks, in which nodes are not only

characterized by network interactions G, but also the rich auxiliary information described by node

attributes A [35, 59]. Jointly sampling G and A would make random walks more informative [86].

Random walks would serve as a bridge that helps our proposed deep embedding architecture

handle the geometric structure. Deep neural networks have been demonstrated to be effective

in modeling many types of unstructured data such as natural language, images, and audios [50].

However, when directly applied to model topological structures, existing deep architectures often

achieve suboptimal performance, given that networks are in irregular or non-Euclidean spaces [15].

While attempts have been made based on graph convolutional networks [45, 46] or sophisticated

objective functions [22, 51, 60, 59, 115], we explore to leverage random walks to convert the

irregular attributed networks G into structured data. However, it is a challenging task since node

attributes are within a distinct data structure than the network.

4.2.1.1 Unified walking mechanism

To tackle the heterogeneous information and effectively sample the attributed node interactions,

AttriWalk defines a unified walking mechanism. The key idea is to construct a bipartite network

A based on node attributes, and leverage it to propel the random walks more diverse and alleviate

the tendency of converging to nodes with high network centralities. We now describe it in detail.

To balance the elements in G and A, we first employ `1 norm to normalize each row of G and

A respectively, and get Ḡ and Ā. Then we collect all the m node attribute categories as a set,

denoted as U . By considering each node attribute category δk ∈ U as a node, we could define a

new bipartite network as A , (V ,U , E), where E represents the corresponding edge set. There

exists an edge between nodes i ∈ V and δk ∈ U , if node i contains attributes δk. The weight of this

edge is defined as āik, i.e., the value in the ith row and kth column of Ā.
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The proposed Attriwalk would jump among all these n + m nodes. Assume that currently we

have jumped to a node i ∈ V . As illustrated in Figure 4.1, to determine the next transition, we flip

a biased coin that produces heads with probability α.

(i). If it yields head, then we walk one step on Ḡ. We jump to a node j ∈ V , with a probability

defined as,

P (i→ j) =
ḡij∑n
p=1 ḡip

. (4.1)

(ii). If it turns tail, then we walk two steps on A:

First, we jump to a node δk ∈ U with a probability,

P (i→ δk) =
āik∑m
p=1 āip

= āik. (4.2)

Second, from the node δk, we jump to a node j ∈ V , with a probability defined as,

P (δk → j) =
ājk∑n
q=1 āqk

. (4.3)

The walks on A enhance the diversity and flexibility of AttriWalk. In the walking, nodes in V

could interact with each other not only based on the network Ḡ, but also through node attribute

categories U . When α = 1, AttriWalk yields to vanilla random walks on the network. As α

decreases, the walks would be more dependent on node attributes. The corresponding transition

probability matrix could be written as,

P =

 αḠ (1− α)Ā

(1− α)Ā> 0

 ∈ R(n+m)×(n+m)
+ . (4.4)

It should be noted that the sum of each row of P is 1.
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4.2.1.2 Theoretical properties

AttriWalk defines unified walks within networks Ḡ and A. The walks on Ḡ inherit the nice

properties of traditional random walks [68, 80, 101], including being in line with the normalized

cut and spectral segmentation. The walks on A also follow a symmetric node similarity matrix,

which could be considered as a new network, as described in Theorem 3.1.

We could use the alias method [17] to sample from a discrete probability distribution, and

need to walk O(n) steps in total. Comparing with the time complexity of the intuitive solution

O(nNA + n2 + n), the time complexity of AttriWalk is O(NA + n).

4.2.1.3 Sampling settings

Based on AttriWalk, we sample the local topological structure and node attributes of all nodes.

We employ the settings as follows. All the random walks would be truncated to length L. For

each node i ∈ V , we conduct a fixed number B of fixed-length walks. They all use i as the

initial node. We denote all the B learned node index sequences as a set τi. We collect the learned

sequences of all nodes as the set T . For example, in Figure 4.1, we have B = 2, L = 6, and set

τ1 = {{1, 4, δ4, 3, 2, 5}, {1, δ3, 6, 4, δ4, 4}}. In such a way, we convert the complex attributed node

interactions into a series of informative node index sequences T .

4.2.2 Graph recurrent networks - GRN

We now study to perform effective embedding by taking advantage of the learned sequences

T . A widely adopted approach [80, 24] is to consider the sequences as sentences and nodes as

words, and apply word embedding techniques [69] to learn a latent representation for each word.

This approach has been demonstrated to be effective in plain networks. However, in attributed

networks, node properties are also affected by node attributes. Word embedding models could

not take this auxiliary information into consideration. Another line of work [26, 110] exploited to

leverage graph convolutional networks (GCN) to incorporate the random walks into deep learning

models. But the aggregation operation in GCN does not take the node order information into

consideration [45, 46].
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Figure 4.2: Architecture of the designed tailored graph recurrent networks. [38]

4.2.2.1 Proposed neural architecture

The sequences in T describe how nodes interact with neighbors through the topological struc-

ture and node attributes. The hidden state sequences in recurrent neural networks (RNN) naturally

accord with these sampled node interactions. Thus, we explore to utilize RNN to model the or-

der information in T . The architecture of the proposed graph recurrent networks is illustrated in

Figure 4.2, with details as follows.

I. Let {1, δ3, 6, 4, δ4, 4} be a length L sequence in τi. We map each of the L indices into a m-

dimensional vector. If it is the index of a node j ∈ V , then we map it to its node attributes aj . If it

is the index of attribute category δj ∈ U , then we map it to a one-hot vector ej with the j th element

equals to 1.

II. We employ a fully connected layer to reduce the dimension of node attributes, and get vectors

{xj}, for j = 1, . . . , L. Mathematically, xj is computed based on,

xj = σ(ajWa + ba), or xj = σ(ejWa + ba), (4.5)

where σ is the sigmoid function, and Wa ∈ Rm×d is the weight matrix. Each of its row wj is

corresponding to a latent representation of the node attribute category δj . Thus, when there is an
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index δj in the input sequence, ej would help it lookup wj .

III. Given {xj}, we use a bidirectional RNN such as long short-term memory and gated recurrent

units [6] to learn a forward hidden state sequence (−→r1,
−→r2, . . . ,

−→rL) and a backward hidden state

sequence (←−r1,
←−r2, . . . ,

←−rL). Each hidden state could be interpreted as a node, and the RNN en-

ables nodes to interact with both the forward and backward neighbors. It is in line with the way

nodes interact in the original network G. In addition, the corresponding node attributes have been

transmitted into each hidden state, which empowers the heterogeneous network and node attribute

information incorporate within a natural manner.

We take the forward hidden state sequence {−→r j} as an example. −→r j is calculated based on,

fj = σ(xjWxf +−→r j−1Whf + bf ), (4.6)

ij = σ(xjWxi +−→r j−1Whi + bi), (4.7)

oj = σ(xjWxo +−→r j−1Who + bo), (4.8)

cj = fj ◦ cj−1 + ijtanh(xjWxc +−→r j−1Whc + bc), (4.9)

−→r j = oj ◦ tanh(cj). (4.10)

fj , ij , and oj denote the forget, input, and output gates’ activation vectors. cj represents the cell

state vector. ◦ denotes the Hadamard product. tanh denotes the Hyperbolic tangent function. The

output of this bidirectional RNN layer is obtained by concatenating the forward and backward

hidden state vectors, i.e., rj = [−→r j,
←−r j].

IV. For each node i ∈ V , there are totally BL indices in its sequence set τi. Correspondingly,

we could get BL embedding vectors {rj} from the bidirectional RNN layer. We follow a well

studied architecture [26, 110] to compute hi the final embedding representation of node i. We first

apply a pooling method to combine all theB sequences into one, denoted as {r̄1, r̄2, . . . , r̄L}. Then

we apply a pooling method again to merge all the {r̄2, r̄3, . . . , r̄L} into r̂i. The final embedding

representation hi is defined as,

hi = [r̂i, r̄1]. (4.11)
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It should be noted that sequences in τi must start with index i. Thus, r̄1 is the latent representation

of node i before the second pooling.

4.2.2.2 Relations with graph convolutional networks

The key idea of GCN is to input node attributes or a trainable embedding lookup table into

a special multilayer perceptron, in which each node’s representation is learned via averaging its

neighbors’ representations in the previous layer [26, 45]. It could be considered as a first-order

approximation of spectral graph convolutions [15, 46].

GCN could be interpreted as a special case of our proposed graph recurrent networks (GRN).

If we remove the bidirectional RNN layer in GRN, as the number of sampling B keeps increas-

ing, the pooling operation in GRN would approach to inductively learning from all neighbors.

Several efforts [11, 110] also have demonstrated that random sampling from multi-hop neighbors

would improve the performance of GCN. The attributed random walks enable us to boost GCN via

taking the node interaction order information into consideration. While GCN achieves the node

interactions via layer to layer, GRN empowers nodes and attribute categories to interact within

the same bidirectional RNN layer. GCN is not robust to multiple layers since it would become

over-smoothing [58]. Thus, nodes could only interact a few times within GCN. But in GRN, the

bidirectional RNN layer allows much longer interactions.

4.2.3 Optimization

GraphRNA could be trained with an unsupervised, supervised, or semisupervised setting. This

nice property is inherit from GCN [26, 46]. The loss function is not the focus of this paper. We

take a supervised setting as an example. Based on the cross-entropy error, the objective function

could be defined as follows,

L = −
∑
i∈V

y>i log(softmax(σ(hiWh + bh))). (4.12)

where yi is a one-hot vector denoting the label of node i. It is straightforward to replace L by

other task-specific objective functions such as the negative sampling based unsupervised objective
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Algorithm 2: GraphRNA [38]
Input: G, A, d, B, L, α, and labels.
Output: Attributed network embedding representation H.

1 Ḡ and Ā← use `1 norm to normalize each row of G and A;
2 Compute P based on Eq. (4.4);
3 Construct a probability table and an alias table for each pi;
4 for Node i in V do
5 for j = 1 : B do
6 Set i as the initial node;
7 Perform a (L− 1) length attributed random walks based on the probability tables

and alias tables;
8 Append the learn sequence to τi;
9 end

10 Append τi to T ;
11 end
12 for epoch = 1 : epochmax do
13 Shuffle the order of τi in T ;
14 for Set τi in T do
15 Take all B sequences in τi as input and node i’s label as output to train the GRN, as

shown in Figure 4.2;
16 Update weight matrices and bias terms to minimize L in Eq. (4.12);
17 end
18 end
19 for τi = τ1 : τn do
20 hi ← Input all B sequences in τi into the trained GRN;
21 end

function [26, 91].

We summarize the optimization of GraphRNA in Algorithm 2. Given an attributed network

G = (V ,G,A), we first normalize G and A to construct P. It has summarized the transition

probabilities of the joint random walks within G and A. We employ the alias method [17] to

sample truncated random walks from the discrete probability distribution in P. For each node

i ∈ V , we sample B sequences and append them to τi. They all take i as the starting node. We

use τi and node i’s label to train the GRN, based on the objective function L in Eq. (4.12). After

training the GRN over several epochs, we use it to embed τi into hi.
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4.3 Experiments

In this section, we analyze the proposed framework GraphRNA empirically on three real-world

attributed networks. Through the experiments, we target at answering three research questions.

(1) How effective is the embedding representations learned by GraphRNA compared with the

ones learned by state-of-the-art ANE methods, in terms of node classification? (2) GraphRNA

mainly consists of attributed random walks and GRN. How much does each component contribute?

(3) What is the impact of the parameters on GraphRNA, including the probability α, number of

sequence per node B, sequence length L, and embedding dimension d?

We employ three publicly available attributed networks in the experiments, including BlogCat-

alog, Flickr, ACM. They have been introduced in Chapters 2 and 3.

4.3.1 Baseline methods

To validate the effectiveness of GraphRNA, we include three categories of baselines. First, to

study how informative is each single source, we include two network embedding methods, i.e.,

DeepWalk and LINE, and one node attribute embedding method Attribute-Spec. Second, to inves-

tigate how effective is GraphRNA compared with shallow models, we include two state-of-the-art

shallow ANE methods, i.e., MultiSpec and AANE. Third, to analyze how much GraphRNA has

advanced the GCN architectures, we include the vanilla GCN and GraphSAGE. Several baselines

have been introduced in Chapter 2, including DeepWalk, LINE, MultiSpec, and AANE.

• Attribute-Spec [101]: It calculates the similarities between each pair of nodes based on A to

construct a new graph, and learns H from it via spectral embedding.

• GCN [46]: The vanilla GCN. It learns H based on the first-order approximation of spectral

graph convolutions.

• GraphSAGE [26]: It advances GCN via introducing a set of aggregator functions that learn

to aggregate node attributes from a node’s local neighbors.
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BlogCatalog Flickr ACM

Training set for evaluation 25% 50% 100% 25% 50% 100% 25% 50% 100%

Single
Source

DeepWalk 0.551 0.611 0.672 0.373 0.465 0.535 0.576 0.630 0.684
LINE 0.545 0.624 0.684 0.332 0.421 0.516 0.549 0.624 0.693

Attribute-Spec 0.791 0.841 0.869 0.771 0.813 0.846 0.688 0.700 0.704

Shallow
ANE

MultiSpec 0.788 0.849 0.896 0.720 0.800 0.859 0.709 0.719 N.A.
AANE 0.878 0.913 0.932 0.811 0.854 0.885 0.701 0.715 0.722

Deep
ANE

GCN-hidden 0.657 0.701 0.734 0.521 0.558 0.588 0.754 0.766 0.789
GraphSAGE-hidden 0.801 0.876 0.917 0.612 0.743 0.841 0.727 0.769 0.785
GraphRNA-hidden 0.857 0.903 0.938 0.705 0.817 0.881 0.727 0.755 0.781

End-
to-

End

GCN 0.683 0.716 0.740 0.514 0.563 0.590 0.763 0.776 0.798
GraphSAGE 0.820 0.890 0.924 0.626 0.757 0.852 0.741 0.769 0.785

GraphRNA-noAttriW 0.865 0.909 0.942 0.645 0.777 0.874 0.746 0.768 0.788
GraphRNA-noRNN 0.874 0.920 0.943 0.769 0.855 0.902 0.739 0.768 0.784

GraphRNA 0.885 0.925 0.948 0.776 0.866 0.905 0.747 0.768 0.790

Table 4.1: Classification performance of all methods on all datasets in terms of micro-average. [38]

4.3.2 Experimental settings

We use the same experimental settings as Chapter 2. The three real-world datasets that we

employed in the experiments, including BlogCatalog, Flickr, and ACM, have been introduced in

Chapters 2 and 3. For all the deep models, except using their learned H to train an SVM classifier,

we also combine them with the multilayer perceptron classifier into end-to-end models to perform

the classification. For all methods, we use the validation set to fine tune the hyperparameters, as

well as conduct the early stopping in deep models. If it is not specified, all the nodes within the

training set are used to train the classifier. d is set as 100 in default. All the reported experimental

results are the arithmetic average of ten runs.

4.3.3 Effectiveness evaluation

We now answer the three questions proposed at the beginning of this section one by one. For

the first question, we compare GraphRNA with all three categories of baselines.

For all the deep baselines and GraphRNA, labels are used to train the models, and the last

hidden state is returned as H. We also train them together with multilayer perceptron classifiers,
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and report the results in the end-to-end method category. The experimental classification results

in terms of micro-average on the three datasets are summarized in Table 4.1. Similar results are

observed based on macro-average scores, so we omit them.

From the results in Table 4.1, we have three major observations. First, GraphRNA achieves the

best performance on datasets BlogCatalog and Flickr, in terms of micro-average. On ACM, it also

achieves a comparable performance as the best one. For example, on BlogCatalog, GraphRNA

achieves 28.1% of improvements than GCN and 2.6% of improvements than GraphSAGE. GCN

performs well on citation networks, but badly on social networks, i.e., BlogCatalog and Flickr,

while GraphRNA achieves good performance consistently. Second, in general, ANE methods

performs better than the methods with a single source, and deep ANE models achieve higher

micro-average scores than shallow ones. For instance, GraphRNA achieves a gain of 12.3% over

MultiSpec on BlogCatlog and a gain of 2.3% over AANE on Flickr. Third, for all the deep base-

lines and GraphRNA, their performance has been slightly improved by the end-to-end training

settings, comparing with using hidden states to train SVM classifiers separately. For example, on

BlogCatalog, GraphSAGE achieves 1.1% of improvements than GraphSAGE-hidden. It could be

explained by the fact that the representation learning and classification are trained uniformly in

end-to-end models.

For each dataset, we vary the percentage of the training set that has been used for learning the

classifiers as {25%, 50%, 100%}. It means that only {25%, 50%, 100%} of the four folds selected

by the five-fold cross-validation, have been used. From the results in Table 4.1, we have similar

observations as above, as the training percentage varies. For example, when the training percentage

is set as 50% on Flickr, GraphRNA achieves 14.4% improvement compared with GraphSAGE. As

the training percentage increases, the performance of all methods increases.

4.3.4 Component contribution analysis

We now investigate the second question, i..e, how much could GraphRNA’s two major compo-

nents, i.e., AttriWalk and GRN contribute. Two variations of GraphRNA are used for this ablation

study. Their node classification performance on all datasets is included in Table 4.1.
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Figure 4.3: The impacts of parameters the probability α, the number of walks per node B, the
length of each truncated random walk L, and d on GraphRNA. [38]

• GraphRNA-noAttriW: GraphRNA without using attributed random walks to sample T . In-

stead, it employs the vanilla random walks to learn T .

• GraphRNA-noRNN: GraphRNA with the bidirectional RNN layer removed.

From the results in Table 4.1, we have three major observations as follows. First, without

AttriWalk, the performance of GraphRNA-noAttriW decreases, especially on Flickr. It demon-

strates the effectiveness of the component GRN. It should be noted that node attributes are still

available for GraphRNA-noAttriW. It outperforms GraphSAGE on all datasets. For example, it

achieves 1.9% of improvements than GraphSAGE on BlogCatalog. The major difference between

GraphRNA-noAttriW and GraphSAGE is that the former one could take the order information

in the learned sequences into consideration via GRN. This validates the effectiveness of GRN.

Second, without the RNN layer, GraphRNA-noRNN achieves slightly worse performance than

GraphRNA. For instance, GraphRNA achieves 0.3% of improvements than GraphRNA-noRNN

on Flickr. It validates the effectiveness of the proposed GRN architecture. Third, AttriWalk would

bring more performance improvements than the GRN, which indicates that AttriWalk might be

a more important component. In the experiments, the RNN in GRN is instantiated by the long

short-term memory. A tailored or more sophisticated RNN architecture might further improve the

performance of GraphRNA [42].
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4.3.5 Parameter sensitivity analysis

We now study the impact of parameters α,B, L, and d on GraphRNA. α denotes the probability

of conducting vanilla random walks within the joint walks AttriWalk. B denotes the number of

sequences that we have sampled per nodes. We plot the performance on BlogCatalog as a function

of α andB in logarithmic scale, with results shown in Figures 4.3a. Similar results are observed on

other datasets, so we omit them. Form the results in Figures 4.3a, we observe that the performance

of GraphRNA increases as B increases from 1 to 100, and then keeps stable. GraphRNA achieves

the best performance when α is around 0.5, and then achieves slightly worse results when α = 0

and 1. It should be noted that, when α = 0, GraphRNA walks purely on node attributes, so the

network information is no longer available. When α = 1, both the network and node attribute

information is still available, except that AttriWalk becomes vanilla random walks.

L denotes the length of each truncated sequence. It could be interpreted as the depth that nodes

could interact. Larger L means that nodes have more opportunities to reach multi-hop neighbors.

While GraphRNA allows nodes to interact within the same RNN layer, in GCN and GraphSAGE,

nodes would interact from layer to layer. We vary L from 1 to 10, and the changes of GraphRNA’s

performance is shown as a blue curve in Figures 4.3b. By interpreting L as the depth of node

interaction, i.e., number of layers in GCN and GraphSAGE, we plot the performance of GCN and

GraphSAGE as the function ofL. The results are shown as orange and green curves in Figures 4.3b.

From the results, we observe that both GraphRNA and GraphSAGE allow a much larger number

of interactions than the villain GCN.

In GraphRNA, the representation dimension d is interpreted as the number of hidden units

in the layer before last target layer, as shown in Figure 4.2. We vary it from 20 to 220, and the

performance of all ANE methods is shown in Figures 4.3c. From the results, we observe that when

d is too small such as 20, the performance of GraphRNA would be limited. Similar observations

are made on all deep models. Their performance becomes stable when d is large enough.
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5. EXPLORING EXPERT COGNITION FOR EMBEDDING1

We have introduced a series of attributed network embedding frameworks, including AANE,

FeatWalk, and GraphRNA. They have different theoretical foundations, and could serve as an

infrastructure for developing various analysis tasks. Recent advances in explanation-based learning

and human-in-the-loop models show that by involving experts, the performance of many learning

tasks can be enhanced. It is because experts have a better cognition in the latent information such

as domain knowledge, conventions, and hidden relations. It motivates us to employ experts to

transform their meaningful cognition into concrete data to advance network embedding. In this

Chapter, we study a novel problem of exploring expert cognition for attributed network embedding

and propose a principled framework NEEC.

5.1 Introduction

The helpfulness of expert cognition motivates us to investigate the potential of utilizing it

to learn more informative embedding representations. We define the expert cognition as the

intelligence-related information that experts know beyond the data, such as the understanding of

domain knowledge [106], the awareness of conventions [14], and the perception of latent relations.

Existing work such as explanation-based learning [16] and human-in-the-loop models [31, 44]

suggest that the involvement of experts could increase the performance of many learning tasks.

Expert cognition plays an essential role in advancing these data analysis. Since most existing net-

work embedding algorithms are data-driven, we are motivated to explore how to take advantage

of the expert cognition to enhance the performance of embedding. Sentiment analysis is a typical

example of the utilization of expert cognition, which has been successfully applied to improve the

performance of different recommendations [114]. In product review platforms such as Epinions

and Slashdot, items are recommended to users based on their historical reviews. It has been shown
1This chapter is reprinted with permission from “Exploring Expert Cognition for Attributed Network Embedding”

by Xiao Huang, Qingquan Song, Jundong Li, and Xia Hu, 2018, Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining, Pages 270–278, Copyright 2018 by Association for Computing Machinery.
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that most reviews convey different levels of sentiment polarization [32], and the expert-created

sentiment lexicons such as MPQA and SentiWordNet [87] are widely used to advance the review

analysis and recommendation [18, 114].

Although some efforts have been devoted to directly learning expert cognition from the existing

human-generated data [18], such concrete related data is still often limited and could be in different

forms. Motivated by the success of active learning [85, 84] and interactive data mining [1, 31], in

this paper, we propose to explore expert cognition via actively querying the experts. We aim to

convert their abstract cognition into concrete answers, and incorporate them into attributed network

embedding towards a more informative low-dimensional representation.

However, actively exploring expert cognition is a nontrivial task, with three major challenges

as follows. First, expert cognition does not have a concrete format and is not easy to be measured,

since it is related to the intelligence. Traditional solutions are to design specific algorithms accord-

ing to the experts’ understanding [16, 44]. It is hard to be generalized as they involve enormous

engineering experimentations to transform the domain knowledge to algorithms. Second, in a real-

world system, there are usually various types of expert cognition such as the comprehension of

word meaning and the discernment of missing edges [31]. It is difficult to model all of them, or

identify the types that can lead a significant performance gain in the embedding within a limited

number of trials. It is also expensive to design specific models for different attributed networks

and different embedding algorithms. A general way of modeling the expert cognition is essential.

Third, the expert cognition is laborious to obtain as it involves humans in the whole process. Given

a limited amount of human effort, we aim to design the queries in an effective way to maximize the

total amount of learned expert cognition. Meanwhile, the returned answers from the experts could

be heterogeneous with the attributed network. It is desired to have answers that could be easily

incorporated into the embedding.

To bridge the gap, we formally define the problem of exploring expert cognition for attributed

network embedding and study two research questions. (1) How to design effective, general, and

concise format of queries to save the experts’ efforts? (2) How to select the most meaningful
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queries to maximize the total amount of learned expert cognition, given a limited amount of human

effort? (3) How to quantify the amount of expert cognition that contained in the returned answers?

5.2 Problem Statement

The notations and definition of attributed network embedding are the same as Chapter 2. Sup-

pose the raw data of A is human-readable such as the paper abstract or the product review. For

ease of presentation, in this paper, we focus on the undirected networks and propose a general

framework. It can also be directly applied to the directed networks.

Definition 5.1. (Expert Cognition) For real-world attributed networks, the domain experts often

have a better comprehension beyond the data, such as the understanding of domain knowledge, the

awareness of conventions, and the perception of latent relations. We refer their knowledge on this

type of abstract, meaningful, and intelligence-related information as the expert cognition.

Instead of directly modeling expert cognition, we propose a novel way to learn it, i.e., querying

the experts a number of trials to model their abstract cognition as concrete answers. The existing

related data is often limited, and it is difficult to design specific models for different systems as the

given data could be in various forms. Thus, we focus on actively learning from the experts. It is

motivated by the success of active learning [85], which has been shown to be helpful in reducing

the efforts of labeling. The key idea is, if we are allowed to select the nodes for training, a compa-

rable classification accuracy could be achieved even with fewer training labels. However, existing

methods cannot be applied to our problem since it is often expensive to obtain concrete labels,

such as the labels in ranking systems or community detection problems. Also, it is challenging to

incorporate labels into the embedding since they are heterogeneous to the attributed network.

We aim to actively explore the expert cognition in a more general way. We refer experts as

the oracle and formally define the problem of exploring expert cognition for attributed network

embedding as follows.
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Figure 5.1: Illustration of the proposed Network Embedding with Expert Cognition - NEEC. [37]

Given an attributed network G associated with node attributes A and corresponding raw data,

we aim to seek a d-dimensional vector representation hi for each node i, such that both the

topological structure and node attribute proximity could be well preserved in H. Meanwhile, the

system is allowed to learn from the oracle by performing K queries one by one. Given a limited

amount of effort the oracle could devote, we aim to design the queries in a general and efficient

way to include as much as possible expert cognition in the K returned answers. As a result, we

could incorporate the answers into the embedding towards a more informative expert cognition

informed representation H.

5.3 Embedding with Expert Cognition - NEEC

To efficiently model and assimilate the expert cognition actively learned from the oracle into

attributed network embedding, we propose the Network Embedding with Expert Cognition frame-

work - NEEC. It has three components as illustrated in Figure 5.1. (1) We design a general and

concise form of queries to learn expert cognition from the oracle while greatly save his/her effort.

It allows us to model the meaningful but abstract expert cognition as systematical answers. (2) We

explore novel algorithms for the two steps to find the topK meaningful queries. The first step aims

to find B representative and distinct nodes as prototypes, and the second step iteratively selects K

nodes from the remaining nodes with the largest amount of expected learned expert cognition. (3)

We formulate the returned K answers from the oracle as cognition edges and add them into the

initial network structure. Figure 5.1 illustrates an example on a network of six nodes. We first
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select B = 2 nodes as prototypes (in red), and set the remaining nodes (in blue) as a query pool.

In each query, we select a node i (e.g., i = 5) to query. The oracle needs to indicate a node from

the prototypes (e.g., j = 1) that is the most similar to the queried node i. All these answers will

be added into the network structure in the form of weighted edges, named as cognition edges (red

dotted lines). In Figure 5.1, the queried nodes i = 4, 5, 6 are more similar to prototype node j = 1,

so we add weighted edges between them. With these cognition edges, different attributed network

embedding methods could be directly applied to the expert cognition informed network towards a

more informative low-dimensional representation H.

5.3.1 Prototype-based form of queries

Given a limited amount of effort the oracle could devote, simpler queries would allow us to

have a larger number of queries K. Meanwhile, we expect each query to be more effective in

exploring the expert cognition from the oracle. These two aspects often contradict each other,

since complex and specific queries tend to capture more information, but are both hard to design

and answer. An intuitive solution is to query the latent relations of node pairs to model the expert

cognition as identified missing edges. However, it might not be efficient since the total number of

queries K is quite limited compared with the total number of node pairs, i.e., K �
(
n
2

)
. It is also

difficult to select the K most meaningful node pairs from all the unconnected pairs. Our proposed

solution is to learn a more general type of node relations from the oracle, and in a systematical way

to increase the total amount of learned expert cognition.

5.3.1.1 Learning expert cognition with prototypes

Based on the exemplar theory and prototype theory in cognitive science, we propose the

prototype-based form of queries.

Theory 5.2. (Exemplar Theory) [72] In psychology, humans cognize new stimuli by comparing

with exemplars already have in memory, and classify objects based on their similarity to these

exemplars.
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Theory 5.3. (Prototype Theory) [83] For a category of stored exemplars in humans’ memory,

there exists an abstract average of all members called the prototype, and humans perform catego-

rizations based on prototypes when experiencing new objects.

Motivated by the process of humans cognizing new objects, we first select B nodes and define

them as the prototypes of B categories respectively. Then we classify K other selected nodes into

these B categories according to the oracle’s cognition. Such classification process could capture

the oracle’s comprehensive comprehension of the K nodes. In the end, we formulate this valuable

comprehension as cognition edges defined as follows.

Definition 5.4. (Prototype Node) We select a small number (i.e., B) of representative nodes to

serve as prototypes in the oracle’s memory, and refer them as prototype nodes.

Definition 5.5. (Cognition Edge) In each query, we add an edge gij with a predefined weight

γ between the newly selected node i and its most similar prototype node j. We refer gij as a

cognition edge. If there is already an edge between nodes i and j in the initial network, we will

add the weight γ into this edge.

Figure 5.1 illustrates the basic idea of the prototype-based form of queries. Initially, nodes 1

and 3 are selected as prototype nodes. In each query, we select another new node i to query the

oracle. He/she needs to determine node i is more similar to which prototype, based on his/her un-

derstanding of nodes’ human-readable raw data and expertise. A cognition edge would be added to

the network according to the returned answer. It models the category of node i in the oracle’ cog-

nition. After K queries, we could directly apply an embedding algorithm to the expert cognition

informed network towards a more informative unified representation.

5.3.1.2 Analysis of prototype-based form of queries

We have proposed to learn the expert cognition with prototype nodes and model it as cognition

edges. It enjoys several nice properties as follows. First, evaluating similarity takes a much smaller

amount of human effort comparing to other technical tasks such as labeling. The prototype-based

form of queries are general and simple with no specific similarity value required. Second, the data
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for some specific nodes might be limited, but domain experts’ knowledge and cognition could help.

For example, researchers can understand the main idea of papers by reading the abstracts, while

these short paragraphs are often too limited to computers. Third, the oracle only needs to check

B +K nodes in total, which are selected from a pool with size n. It is much smaller than
(
n
2

)
.

5.3.2 Prototype node selection algorithm

We propose two algorithms for the prototype node selection to handle different scenarios. The

key idea is to make prototype nodes representative and avoid being too similar to each other, such

that the oracle could easily distinguish them.

The first algorithm is k-medoids, motivated by the work of [76]. This algorithm is designed

for the network with rich initial data. It aims to select B prototype nodes that cluster the entire n

nodes into B distinct groups. An updating rule that similar to the k-means algorithm is employed.

It first selects B nodes randomly, and then alternatively conducts the following two proceeds until

no change could be made. (1) Assign nodes to their nearest prototype nodes’ clusters based on

node attribute similarity. (2) For each node, compute the sum of its similarities to all other nodes

within the same cluster. For each cluster, set the node that has the maximum similarity sum as the

new prototype node.

The second algorithm is a random strategy for networks with limited initial data or with a

large number of nodes. We first select B nodes from the entire n nodes randomly, and then keep

removing the prototype nodes that are too similar to each other and replacing them with new

random nodes. The similarities are based on the initial attributed network.

5.3.3 Query selection algorithm

We have proposed to learn the expert cognition by linking nodes with their most similar proto-

type nodes. In such a way, we formulate the query selection problem as a node selection task. The

goal is to find K effective nodes to maximize the total amount of expert cognition contained in the

learned cognition edges.

An intuitive solution is to greedily return the top K important nodes [71], aiming to make the
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learned cognition edges more meaningful. However, this might not end up with a good result.

Because important nodes tend to have more edges included in the initial network [70], and the

learned cognition edges would become less influential. It also fails to take other information into

consideration, such as the feedback from the oracle and the node attributes.

5.3.3.1 Exploitation and exploration trade-off

To find the K effective nodes, we first formally define the problem. Let ri,k denote the amount

of expert cognition contained in the kth returned answer, referred as reward. Here i denotes the kth

node we have queried. We have no access to the reward ri,k before asking the kth query. The goal

is to maximize the total rewards after all K queries, i.e.,

maximize
i∈P1

JK =
∑K

k=1
ri,k, (5.1)

where Pk denotes the query pool in the kth iteration. In the first iteration, the initial P1 has (n−B)

nodes since we have employed B nodes as prototype nodes. For the node that is already selected

previously, its reward is 0 since no new cognition edge would be added. We remove it from the

pool and get the Pk+1.

In the beginning, we have limited information about the relation between the node i and ri,k.

Therefore, when performing the querying, we aim to not only maximize the learned expert cogni-

tion in the current trial, but also explore the system to optimize the incoming iterations. To tackle

this exploration and exploitation trade-off and maximize the total rewards JK , we propose a novel

contextual bandit [57, 111] algorithm to perform the node selection.

5.3.3.2 Contextual bandit algorithm

Our main idea is to assume that nodes within the same cluster share the same model that

measures their relations to the rewards. For nodes i ∈ P1, we cluster them into d models, and

define an information vector xi to describe the property of each node i. We employ a linear
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function to model the correlation between xi and ri,k, i.e.,

E[ri,k|xi] = xiθa + ηa, (5.2)

where a ∈ {1, 2, . . . , d} denotes the cluster that node i belongs to, and ηa is a random noise with

Gaussian distribution N (0, σ2
a).

We aim to maximize JK by conducting two processes for K iterations as follows. In iteration

k: (1) We choose a node i ∈ Pk with the maximum expectation to get higher JK . It is based on all

the learned θa, for a = 1, 2, . . . , d. (2) After querying the selected node i, we would get a reward

ri,k from the oracle. Based on ri,k and xi, we update the θa, aiming to improve the node selection

strategy, where a is the cluster that node i belongs to. We now introduce the details.

There are three types of information dominate node i, i.e., network structure, node attributes,

and correlations to the B prototype nodes. We define xi ∈ R1×(d+2) as,

xi = [hi,maxSimi(i),Corr(i)], (5.3)

where hi is the attributed network embedding representation of node i, and maxSimi(i) denotes

the maximum similarity from node i to all B prototype nodes. Corr(i) denotes the average of

the correlations between node i and all prototype nodes. To make the algorithm efficient, in this

chapter, xi is fixed from the initialization. It is flexible to explore dynamic frameworks that update

xi in every iteration. Both the distance and correlation are based on the cosine similarities in the

initial embedding representation space H0.

We now focus on each cluster a. Let Ya ∈ Ry×(d+2) be a matrix that collects the information

vectors of the y queried nodes in cluster a. Let ya ∈ Ry×1 denote the corresponding y rewards. By

leveraging ridge regression to estimate θa and adding a penalty term λ to improve the estimation

performance, we have,

θ̂a = (Y>a Ya + λI)−1Y>a ya. (5.4)
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Then for any δ > 0, with probability at lease 1 − δ, the expectation of the reward of selecting a

node i in cluster a is bounded by [102],

xiθ̂a − αfa(i) ≤ E[ri,k|xi] ≤ xiθ̂a + αfa(i), (5.5)

where α = 1 +
√

ln(2/δ)/2 is a constant, and

fa(i) ,
√
xi(Y>a Ya + λI)−1x>i . (5.6)

The work of [2, 4] have shown that choosing the node maximizing the upper confidence bound

xiθ̂a + αfa(i) in each iteration achieves the best performance in maximizing JK . The key idea is,

when a node with large xiθ̂a is chosen, a high reward is expected, and such trial is an exploitation

process. When a node with large αfa(i) is chosen, this high variance means that we have limited

knowledge on the model for cluster a, thus, we explore it more in the current trial. Jointly maxi-

mizing xiθ̂a + αfa(i) makes a trade-off between exploitation and exploration. As a conclusion, in

iteration k, the best node i for querying could be computed as follows.

maximize
i∈Pk

g(i) = xiθ̂a + αfa(i). (5.7)

5.3.4 Expert cognition quantization

We have defined the amount of expert cognition included in the kth returned answer as ri,k. We

now introduce how to quantify it. The key idea is that incorporating more expert cognition could

reduce the disagreements between the network proximity and node attribute proximity. Given a

new node, experts usually jointly consider different types of information to get a comprehensive

understanding, including its relation network and node attributes. It matches the observation that

node attributes often highly tie in with the topological structure [67, 98]. However, in the data,
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Algorithm 3: Network Embedding with Expert Cognition [37]
Input: G, A, d, B, K, β, the oracle.
Output: Cognition informed representation H.

1 Select B prototype nodes via k-medoids or random strategy;
2 Set the remaining nodes as P1 and split them into d clusters;
3 Collect the information vectors of nodes in P1 based on Eq. (5.3);
4 Calculate P based on Eq. (5.8);
5 Calculate initial representation H0 based on an ANE framework;
6 Set all the Qa ← λI, qa ← 0, and calculate all the g(i);
7 for k = 1 : K do
8 Choose node the i with maximum g(i);
9 Query the oracle node i and get the answer;

10 Incorporate node i’s cognition edge to G;
11 Calculate ri,k based on Eq. (5.9);
12 Update Qa ← Qa + x>i xi and qa ← qa + ri,kx

>
i ;

13 Remove node i from the set Pk and get Pk+1;
14 For nodes in cluster a, set g(i)← xiQ

−1
a qa + α

√
xiQ−1

a x>i ;
15 end
16 Calculate cognition informed H based on current G and A.

there always exist some disagreements between the two sources, and we quantify them as follows.

P = |S(U(G)
) − S(U(A)

)|, (5.8)

where | · | calculates each absolute value. U(G) and U(A) are the embedding representations of the

initial network and node attributes. We embed them to alleviate the effect of noise and missing

data. Let j be the most similar prototype node of i based on the answer. Since adding a cognition

edge (i, j) could alleviate the disagreement, we quantify the learned expert cognition in the kth

iteration as,

ri,k = pij. (5.9)

5.3.5 Network embedding with expert cognition

NEEC could be generalized to advance different embedding algorithms. We now introduce a

simple ANE algorithm.
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5.3.5.1 A simple attributed network embedding algorithm

The main idea of the spectrum technique is to enforce nodes i and j with larger proximity sij to

be closer to each other in the embedding space. It can be achieved by minimizing the loss function

Jspec, i.e.,

Jspec =
1

2

∑n

i,j=1
sij‖

ui√
di
− uj√

dj
‖2

2, (5.10)

where sij is the proximity in S(G). di is the sum of the ith row of S(G), and it is employed for

normalization. ui needs to be orthonormal to avoid being arbitrary. We could further rewrite it as

a maximization problem by defining JG = 1− Jspec, i.e.,

maximize
U(G)

JG = Tr(U(G)>L(G)U(G))

subject to U(G)>U(G) = I,

(5.11)

where L(G) = D(G)− 1
2S(G)D(G)− 1

2 is the graph Laplacian [101]. D(G) is the degree matrix of S(G),

with di in the diagonal.

Similarly, we apply the same technique to the node attribute information A, and calculate its

embedding representation U(A) by maximizing JA = Tr(U(A)>L(A)U(A)), with U(A)>U(A) = I.

We apply a simple strategy to assimilate the network and node attributes towards a joint node

proximity as follows.

S(H) = βS(G) + (1− β)S(A), (5.12)

where β balances the contributions of network and node attributes. Similarly, we could define

the Laplacian L(H) = D(H)− 1
2S(H)D(H)− 1

2 , where D(H) is the degree matrix of S(H), and apply the

normalized spectral embedding technique to learn H as follows,

maximize
H

J = Tr(H>L(H)H)

subject to H>H = I.

(5.13)
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5.3.5.2 Embed the learned expert cognition

We summary the processes of NEEC in Algorithm 3. Given an attributed network with G and

A, we first select B prototype nodes and set the remaining nodes as the initial query pool P1. To

choose the optimalK nodes from P1, we perform a contextual bandit algorithm based on Eq. (5.7).

It has two items that are not necessary to be computed from scratch. We denote them as follows.

Qa = Y>a Ya + λI, and qa = Y>a ya. (5.14)

Thus, in each iteration k, we update them according to the rules in line 12. Then we select the node

with the maximum explanation upper confidence bound as defined in Eq. (5.7). After querying the

oracle, we incorporate the answer into G as a cognition edge. When all the budget is used, we apply

an attributed network embedding method to the current network G and A, and jointly embed them

towards a more informative cognition informed representation H.

5.4 Experiments

We apply NEEC on three real-world attributed networks to demonstrate its effectiveness and

generalizability. In the experiments, we target to investigate three questions. (1) How effective

are the proposed prototype-based form of queries and the query selection algorithm? (2) Could

the learned expert cognition be used to improve different embedding methods? (3) What are the

impacts of the parameters B, K, and d, on the expert cognition learning?

5.4.1 Experimental settings

We use the same experimental settings as Chapter 2. The three datasets used in the experiments,

including BlogCatalog, Flickr, and ACM, have been introduced in Chapters 2 and 3. If it is not

specified, we set d = 100 and B = 9. All results are the means of ten test runs.

To create the oracle, for each dataset, we randomly sample a certain percentage of the entire

edges and attributes as the initial attributed network. The remaining data is considered as the

cognition of the oracle, so he/she answers the queries based on the entire original dataset. The
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BlogCatalog Flickr ACM

Training 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%
Node Num 1,455 2,078 3,118 5,196 2,121 3,030 4,545 7,575 4,616 6,594 9,890 1,6484

K 242 495 1,114 3,092 338 691 1,556 4,316 348 709 1,598 4,435

Initial 0.287 0.359 0.430 0.520 0.261 0.304 0.358 0.432 0.232 0.270 0.319 0.400
RandomPair 0.286 0.358 0.431 0.520 0.261 0.306 0.365 0.435 0.231 0.267 0.317 0.412
LinkPredict 0.287 0.360 0.430 0.523 0.261 0.303 0.359 0.433 0.230 0.278 0.310 0.392
AddKEdges 0.312 0.379 0.462 0.547 0.255 0.312 0.363 0.457 0.258 0.300 0.380 0.508
HiddenEdge 0.298 0.370 0.437 0.529 0.265 0.301 0.363 0.436 0.232 0.275 0.322 0.418
w/o_Bandit 0.295 0.366 0.447 0.556 0.259 0.326 0.368 0.439 0.238 0.265 0.306 0.391

NEEC_Rand 0.317 0.393 0.463 0.558 0.277 0.367 0.433 0.508 0.235 0.288 0.355 0.447
NEEC_Kmed 0.313 0.389 0.469 0.571 0.281 0.364 0.443 0.515 0.242 0.284 0.363 0.445

RandomPair −0.47% −0.27% 0.07% −0.07% 0.04% 0.87% 1.87% 0.64% −0.59% −1.35% −0.63% 3.11%
LinkPredict −0.03% 0.35% −0.07% 0.41% 0.00% −0.36% 0.15% 0.15% −0.80% 2.90% −2.92% −2.09%
AddKEdges 8.43% 5.55% 7.36% 5.14% −2.28% 2.79% 1.20% 5.83% 10.85% 10.96% 19.23% 27.00%
HiddenEdge 3.61% 3.06% 1.52% 1.68% 1.60% −0.80% 1.41% 0.81% −0.26% 1.81% 0.93% 4.56%
w/o_Bandit 2.64% 2.06% 3.82% 6.75% −0.80% 7.43% 2.61% 1.58% 2.30% −2.07% −4.13% −2.17%

NEEC_Rand 10.41% 9.63% 7.69% 7.27% 6.24% 20.87% 20.78% 17.43% 1.07% 6.74% 11.25% 11.66%
NEEC_Kmed 9.03% 8.34% 9.01% 9.67% 7.64% 19.78% 23.60% 19.22% 4.26% 5.16% 13.71% 11.30%

Table 5.1: Classification performance of different methods in terms of micro-average. [37]

oracle determines the most similar prototype nodes based on the similarity of the original node

attributes. Then the expert cognition learning methods could be employed to query the oracle and

enhance the initial networks. A network embedding or attributed network learning method would

be applied to both the initial network and the learned network. In such a way, we are able to

evaluate the amount of learned expert cognition by measuring the performance improvement of

the embedding representation.

5.4.2 Effectiveness of NEEC

To study the first question proposed at the beginning of this section, we compare NEEC with

three types of baselines. First, to investigate the effectiveness of the proposed prototype-based

form of queries, we include RandomPair, LinkPredict, and AddKEdges. Second, to demonstrate

the effectiveness of the proposed way of formulating expert cognition, we include HiddenEdge.

Third, to study the effectiveness of the proposed query selection algorithm, we include a variation

of NEEC, i.e., w/o_Bandit. For NEEC, we include both k-medodis and random prototype node

selection algorithms. The details of them are described as follows.

• RandomPair: No prototype node is defined. It randomly selects B + K unconnected node

pairs for querying. The oracle will indicate an edge, if the two nodes are linked in the original
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dataset or have an original node attribute similarity that is greater than a threshold.

• LinkPredict: Similar to RandomPair, but the B+K pairs are selected from the unconnected

pairs based on the probabilities of having edges, which are based on the weighted-`1 edge

features [24] in spectral embedding space.

• HiddenEdge: It queries the oracle based on prototype nodes, but without using the cognition

edges. It adds edges between the selected node i and any prototype nodes that have latent

relationships with i or are highly similar to i.

• w/o_Bandit: NEEC without using the proposed query selection algorithm. It chooses the top

K important nodes with the maximum eigenvector centrality [71].

• AddKEdges: It randomly queries the oracle a large number of node pairs until K edges were

added. This baseline unfairly takes much more human effort than all others.

5.4.2.1 Form of queries investigation

To study the effectiveness of querying with prototype nodes, we compare NEEC with Random-

Pair, LinkPredict, and AddKEdges. All these three baselines query the oracle without a prototype.

For RandomPair and LinkPredict, the total number of queries is set as B +K, such that the oracle

needs to check at least B + K nodes and pay more effort than in NEEC. AddKEdges needs to

make an extremely large number of queries. The classification performance w.r.t. micro-average

is shown in Table 5.1. All of them use the same embedding algorithm in Section 5.3.5. From the

results, we observe that NEEC outperforms all the baselines on all the three datasets. For instance,

on Flickr, both RandomPair and LinkPredict have almost no improvement, while NEEC_Kmed

achieves 19.22% improvement comparing with the embedding of the initial attributed network.

Even though AddKEdges performs a large number of queries, NEEC improves more on BlogCata-

log and Flickr. On ACM, NEEC achieves less improvement. The reason is that AddKEdges needs

to perform up to 9.4× 106 queries.

To further investigate the performance of NEEC under different training percentages, i.e., the
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percentage of data in training group that has been used, we vary it from 10% to 100%. The results

in Table 5.1 show that NEEC consistently achieves higher performance than all baselines except

AddKEdges. For instance, when the training percentage is 25% on Flickr, NEEC_Rand achieves

20.87% improvement. It also demonstrates that the prototype-based form of queries is effective in

learning expert cognition.

5.4.2.2 Effectiveness of cognition edge investigation

To study the effectiveness of the proposed way of transforming expert cognition into concrete

data, we compare NEEC with HiddenEdge, which models the expert cognition as latent edges.

Their performance in items of different training percentage is summarized in Table 5.1. As we

can see, HiddenEdge achieves limited improvement. For instance, NEEC_Kmed achieves 9.67%

while HiddenEdge achieves 1.68%, when the training percentage is 100% on BlogCatalog. It

demonstrates the effectiveness of the proposed cognition edges.

5.4.2.3 Prototype node and query selection algorithms investigation

We provide two algorithms to select the prototype nodes, i.e., NEEC_Rand and NEEC_Kmed.

As shown in Table 5.1, NEEC_Rand might achieve slightly better performance when the training

percentage is 10% or 25%. It is because when the number of nodes is small, the initial information

would be too limited to perform the clustering well in NEEC_Kmed.

To study the effectiveness of our contextual bandit algorithm in query selection, we com-

pare NEEC with w/o_Bandit. The performance with respect to different training percentage is

shown in Table 5.1. We observe that NEEC achieves more improvement. For example, on Flickr,

NEEC_Rand achieves 17.43% improvement while w/o_Bandit achieves 1.58% improvement.

5.4.2.4 Effectiveness and efficiency of NEEC investigation

Up till now, we have demonstrated the effectiveness of each component of NEEC. The number

of queries we performed also demonstrates the effectiveness of NEEC. We summarize the number

of queries K and performance improvement in Table 5.1. As we can see, NEEC achieves signif-

icant improvement with a small number of queries. For example, NEEC_Kmed achieves 19.78%

72



Dataset BlogCatalog Flickr ACM

Average Time (s) 2.97e−003 8.02e−003 2.28e−002

Table 5.2: The computation time of each iteration in NEEC. [37]

9%                                              12%  18%                                                         24% 

Figure 5.2: The classification performance of five embedding methods before and after incorpo-
rating the expert cognition. [37]

improvement by conducting 691 queries in a network with 3,030 nodes on Flickr.

NEEC is also an efficient interactive system that could respond the oracle immediately. The

average computation time of each iteration in NEEC is shown in Table 5.2. For example, on

Flickr, NEEC needs 8.02 milliseconds to update the system and compute a new query. It verifies

the efficiency of NEEC.

5.4.3 Generalizability evaluation

We now study how general is the expert cognition learning framework NEEC. We include two

network embedding methods, i.e., Spectrum and DeepWalk, and two ANE methods, i.e., AANE

and LANE, as baselines. We have introduced DeepWalk and AANE in Chapter 2.

• Spectrum [101]: It performs spectral embedding on the pure topological structure to evaluate

the amount of information that we have learned in the network space.

• LANE [35]: It is used for incorporating labels into network embedding. We set the labels

as zeros. It jointly embeds the network and node attributes by maximizing their correlations

based on the spectral embedding.

The performance of the five embedding methods before and after incorporating the expert cog-

nition is shown in Figure 5.2. We omit the result on ACM since we obtain similar observations.
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B: Prototype Node Num (K/n): Query Num/Node Num d=20             d=60             d=100           d=140           d=180

Figure 5.3: Performance improvement of embedding methods after incorporating the expert cog-
nition with parameters varying. [37]

From the figure, we find that all the five embedding methods have significant performance im-

provements after incorporating the expert cognition. For example, DeepWalk achieves 14.60%

improvement and LANE achieves 15.29% improvement on BlogCatalog. We further increase

one-third of the sample percentage for the initial network to study its impact. From the results

in Figure 5.2, the same observations are observed, i.e., all the five methods have significant per-

formance improvements after incorporating the expert cognition. We also find that the amount of

improvement decreased. This can be explained by the fact that, as the sample percentage increases,

the amount of knowledge that the oracle obtained decreases.

5.4.4 Parameter analysis

We now study the impacts of the number of prototype nodes B, the number of queries K, and

the embedding representation dimension d. The performance improvement w.r.t. B and K
n

after

incorporating the expert cognition is shown in Figure 5.3. As we can see, the performance im-

provement increases as B increases on all the three datasets. It is because more prototypes tend to

create more accurate cognition of nodes. But it also takes more human effort. The performance

improvement increases rapidly at the beginning and then increases smoothly thereafter. Similar

observations are made for the parameter K. Larger query number means more expert cognition,

but their correlation is not always linear. We also vary d to see the performance improvement of

the five embedding methods and show the results in Figure 5.3. The gray bars denote the corre-

sponding performance improvement. We see that all methods perform better after incorporating

the cognition edges as d increases from 20 to 180. This also verifies the generalizability of NEEC.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we propose a series of embedding and interactive frameworks to handle the het-

erogeneous information learning in real-world networks at scale. Attributed network embedding

aims to learn a low-dimensional continuous vector representation for each node, such that informa-

tion in the network and node attributes could be preserved. Challenges include the heterogeneity of

networks and node attributes. Also, real-world networks often have a large number of nodes and a

high-dimensional node attributes. We systematically develop three attributed network embedding

algorithms, including AANE, FeatWalk, and GraphRNA.

First, AANE could effectively model attributed networks by incorporating its node proximity

into network embedding in a distributed manner. It learns a low-dimensional representation based

on the decomposition of the node attributes affinity matrix and the embedding difference between

connected nodes. A distributed optimization algorithm is developed to decompose the complex

problem into many sub-problems of low complexity, which could be solved by sub-workers in

parallel. A variation of AANE to handle streaming networks is also proposed. Experiments on

the three real-world attributed networks demonstrate the effectiveness and efficiency of AANE.

Second, FeatWalk could encode the network and node attributes into a unified latent representa-

tion. Without calculating any similarity measure among nodes’ attributes, we design an alterna-

tive way to simulate the similarity-based random walks among nodes, which samples the local

node similarities and preserves them in walking trajectories. Along with the trajectories learned

via random walks on the network relations, we apply a scalable word embedding algorithm to

learn the joint representations of nodes from these trajectories. Experiments on the four real-word

datasets validate the scalability and effectiveness of FeatWalk. Third, we propose an elegant walk-

ing mechanism - AttriWalk, which could conduct collaboratively sampling within the network and

node attributes. Motivating from the recent advances of deep learning techniques in represen-
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tation learning, we further design a tailored graph neural network architecture upon AttriWalk,

named GraphRNA, to conduct attributed network embedding. GraphRNA converts the complex

attributed node interactions into a series of informative node index sequences based on AttriWalk,

and encodes them into unified vector representations via graph recurrent networks. Evaluation on

real-world datasets demonstrates the effectiveness of GraphRNA comparing with diverse baselines.

AANE, FeatWalk, and GraphRNA have different theoretical foundations, including distributed

matrix factorization, spectral embedding, random walks, and graph neural networks. Thus, they

have different properties and could be employed to handle different real-world scenarios.

Expert cognition is an essential type of knowledge that could advance various real-world data

analysis tasks, including attributed network embedding. Learning and modeling expert cognition

is promising but challenging as it is often abstract, diverse, and laborious to obtain. Thus, we

explore an interactive framework - NEEC to involve data scientists and domain experts to help in

learning more informative latent representations. Instead of directly modeling expert cognition, we

learn it from the oracle by performing a number of concise but effective queries. The queries are

carefully designed based on the exemplar theory and prototype theory, and systematically selected

via a contextual bandit algorithm. Based on the returned answers from the oracle, the meaningful

but abstract expect cognition is modeled as new cognition edges, which could be directly added

into the network. Thus, the learned expert cognition could be incorporated into the latent represen-

tation by any network embedding algorithm. Experiments on real-world datasets demonstrate the

effectiveness and generalizability of NEEC.

ANE is crucial to the field since their learned node representations could well preserve all the

heterogeneous information in the systems, and directly be employed as node features to perform

various analysis applications. This thesis will broadly impact fields such as Information Retrieval,

Social Computing, and Health Informatics.

6.2 Future Research Directions

While performing research on learning from attributed networks, I have accumulated a num-

ber of rewarding but challenging research questions. They could be categorized into two direc-
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II. Human-demand-driven
Interpretability, fairness, security, 

privacy, confidence interval

I. Automated
Precision & recall

III. Human-in-the-loop
Latent relations, sentiment

IV. Interdisciplinary
Data science expertise

Human-
centric

Cognition
Domain knowledge

Data science expertise

Demands

Precision & recall 
Interpretability

Fairness
Security

Figure 6.1: Human-centric network learning based on the demands and cognition of humans.

tions, i.e., human-centric network learning and tailored network learning for high-impact interdis-

ciplinary studies, as illustrated in Figure 6.1.

6.2.1 Human-centric network learning

Given that most network analysis algorithms are data-driven, it is essential to explore human-

centric network learning. We roughly categorize the research topics into three classes.

6.2.1.1 Automated network learning

We first focus on humans’ demands on precision and recall. There are many available network

embedding algorithms and end-to-end learning methods, including graph neural networks with

various architectures. They have different properties, with performance vary in different networks

and tasks. For example, when attention heads in graph attention networks [100] are selected care-

fully, they could achieve prominent learning performances on citation networks and protein-protein

interaction networks. GraphSAGE [26] has been shown to be sensitive to the dimension of hid-

den units. These hand-crafted architectures not only require extensive search in the design space

through many trials, but also tend to obtain suboptimal performance when they are transferred to

other graph-structured data. Thus, it is desired to have a system that can automatically identify and

tune an appropriate network learning algorithm or graph neural architecture, for a given network

and task. Such system would enable the analysis of real-world networks more easily accessible

to data consumers who have a limited data science background and data scientists who want to

identify suitable models quickly.
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6.2.1.2 Human-demand-driven network learning

Human demands can go beyond precision and recall. As illustrated by Figure 6.1, we also care

about transparency, interpretability, fairness, privacy, security, and confidence intervals.

For instance, domain experts would trust and effectively utilize prediction results, only if they

could apprehend the models or results. Similar to many other machine learning methods, network

embedding results remain hard to be understood by users. Each dimension in the embedding space

usually does not have any specific meaning, thus it is difficult to comprehend how the embedding

instances are distributed in the reconstructed space. In addition, there are two information sources

in attributed networks, it is challenging to specify which source has been actively used in generat-

ing the embedding results. Thus, we plan to investigate the interpretation of network embedding,

aiming to understand how instances are distributed in embedding space, as well as explore the

factors that lead to the embedding results.

Also, to enhance the security in network learning, I plan to explore the adversarial network

learning. Deep network learning, such as graph neural networks, has achieved superior empirical

performance. But deep models could be easily attacked. Given that there are many security-related

network analysis applications, e.g., financial fraud detection and fake news detection, it is urgent

to investigate adversarial network learning to enhance the robustness of graph neural networks.

Another example is network learning with confidence intervals, which is essential to the deci-

sion making on networks. It is a nontrivial task to learn confidence intervals on networks, espe-

cially for graph neural networks.

Thus, network learning with interpretability, fairness, privacy, and security are all promising,

essential, and in the early stages.

6.2.1.3 Human-in-the-loop network learning

We now focus on the cognition of humans, as illustrated in Figure 6.1. Developing interac-

tive models to learn from domain experts and data scientists is also a promising way of advancing

network analysis. As introduced in Chapter 5, experts could know extra prior knowledge of data,
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such as the understanding of domain knowledge and the perception of latent relations. The pro-

posed framework NEEC in Chapter 5 explores an effective and general way to learn and embed

the cognition of latent node similarities. There are many other types of domain knowledge such

as the comprehension of semantic information and the awareness of conventions. It is challenging

but rewarding to model and incorporate more types of expert cognition.

6.2.2 Interdisciplinary research

There are many opportunities in leveraging advances in network learning to address real-world

problems in other disciplines and promote social good. I elaborate on three exemplary fields.

First, social data science. Tons of user-generated content are available on various online so-

cial platforms. These platforms often have different foci and have become an essential source for

studying the 21st century society. Scalable network learning serves as an effective tool to enable

efficient studies on these large-scale social networks. For example, network embedding could ac-

celerate the moral behavior study. Recent sociological studies show that seven moral rules are

universal, including family values, group loyalty, reciprocity, bravery, respecting others, fairness,

and property rights. Understanding moral behavior helps us gain insights into human sociality.

E.g., many social conflicts are essentially conflicts of ordering moral rules. When studying the

evolution of moral behavior, network learning tools could be used to discover patterns in social

dilemma games. For example, when studying network reciprocity, social roles such as friends and

strangers could be described by node attributes. The embedding representations of communities

could be used to characterize cooperative groups. Other examples include the early warning of

cyberbullying, detection of fake news, as well as demographic inference and representative popu-

lation estimation.

Second, personalized online education. It is a long-standing dream to educate individual stu-

dents according to their aptitudes, interests, and learning styles. For example, some people learn

faster via finding answers to questions, while some respond more effectively to associative learn-

ing. In online education, students, assignments, multimedia content materials, forum posts, inter-

act with each other and form a large network. Network learning techniques could be applied to
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perform learning path recommendation. Fertile node attributes such as the descriptions of assign-

ments, content in materials, attributes and posts of students, are also available. Thus, attributed

network embedding could serve as an efficient analysis tool. Tailored interactive models could be

explored to accelerate the recommendation.

Third, drug-drug interaction prediction. The pharmacologic effect of a drug might be altered

by another drug or special food, when they are administered simultaneously. Such drug-drug and

drug-food interactions could be modeled as links. By considering drug descriptions has node

attributes, attributed network embedding could be applied to predict interactions between a new

drug and existing drugs.
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APPENDIX A

PROOF OF THEOREMS AND COROLLARIES

We now prove Theorem 2.3.

Proof. Our goal is to prove that f(xk+1) ≤ f(xk), when xk+1 and xk have a relation as follows.

xk+1 = (
∑

jajbjzj − c)× (2Q +
∑

jajbjI)
†.

First, for xk 6= zj , we define a new quadratic function of x as follows,

g(x) , x(Q + 0.5
∑

jajbjI)x
> − (

∑
jajbjzj − c)x>. (A.1)

It is easy to prove that g(x) achieves the global minimum at xk+1. Thus, for any vector xk 6= zj ,

we have g(xk+1) ≤ g(xk). By substituting xk+1 and xk into g(x), we get an inequation as follows.

xk+1Qxk+1>+cxk+1>+
∑

jajbj(0.5x
k+1−zj)xk+1> ≤ xkQxk>+cxk>+

∑
jajbj(0.5x

k−zj)xk>.

(A.2)

Second, for any pair of vectors {xk,xk+1}, w.r.t. any zj , we have,

0.5‖xk − zj‖2
2 + 0.5‖xk+1 − zj‖2

2 ≥ ‖xk − zj‖2‖xk+1 − zj‖2. (A.3)

We could further unfold Eq. (A.3) as follows.

(0.5xkxk> − zjx
k> + 0.5zjz

>
j ) + 0.5zjz

>
j ≥ ‖xk − zj‖2‖xk+1 − zj‖2 − 0.5xk+1xk+1> + zjx

k+1>,

xkxk> − 2zjx
k> + zjz

>
j − 0.5xkxk> + zjx

k> ≥ ‖xk − zj‖2‖xk+1 − zj‖2 − 0.5xk+1xk+1> + zjx
k+1>,

‖xk − zj‖22 − 0.5xkxk> + zjx
k> ≥ ‖xk − zj‖2‖xk+1 − zj‖2 − 0.5xk+1xk+1> + zjx

k+1>,

‖xk − zj‖2‖xk+1 − zj‖2 − (0.5xk+1 − zj)xk+1> ≤ ‖xk − zj‖22 − (0.5xk − zj)xk>.
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Since bj = 1
‖xk−zj‖2 , we could multiply bj on both sides of the above inequation, and have,

‖xk+1 − zj‖2 − bj(0.5xk+1 − zj)x
k+1> ≤ ‖xk − zj‖2 − bj(0.5xk − zj)x

k>,∑
jaj‖xk+1 − zj‖2 −

∑
jajbj(0.5x

k+1 − zj)x
k+1> ≤∑jaj‖xk − zj‖2 −

∑
jajbj(0.5x

k − zj)x
k>.

(A.4)

By summing up Eqs. (A.2) and (A.4), we get,

f(xk+1) ≤ f(xk). (A.5)

Based on this proved monotonicity, f(x) is guaranteed to achieve the global optimum if and only

if xk+1 = xk or x = zj since it is convex.

We now prove Corollary 2.4.

Proof. Based on Theorem 2.3, it is straightforward to prove Corollary 2.4 by defining the corre-

sponding known Q, c, and aj , for all the j ∈ N(i), as follows.

Q = Zt>Zt + 0.5ρI, (A.6)

c = ρut
i − ρzti − 2siZ

t, (A.7)

aj = λgij. (A.8)

We now prove Theorem 3.1.

Proof. Assume that we walk from node i ∈ V to an arbitrary attribute category δk, then the process

of traveling from δk to node j is independent of the one from i to δk. Therefore, we compute the
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probability of jumping from i to j as,

P (i→ j) =
m∑
k=1

P (i→ δk)P (δk → j),

=
m∑
k=1

āik
ājk∑n
q=1 āqk

,

= [āi1d11, āi2d2, . . . , āimdmm]ā>j = sij.

(A.9)

It should be noted that P (i→ j) = P (j → i) and
∑n

i=1 sij = 1.
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