Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period, even for Texas A&M users with NetID.

    Two-Stage Metropolis Hastings; Bayesian Conditional Density Estimation & Survival Analysis via Partition Modeling, Laplace Approximations, and Efficient Computation

    Thumbnail
    View/Open
    PAYNE-DISSERTATION-2018.pdf (2.673Mb)
    Date
    2018-03-09
    Author
    Payne, Richard Daniel
    Metadata
    Show full item record
    Abstract
    Bayesian statistical methods are known for their flexibility in modeling. This flexibility is possible because parameters can often be estimated via Markov chain Monte Carlo methods. In large datasets or models with many parameters, Markov chain Monte Carlo methods are insufficient and inefficient. We introduce the two-stage Metropolis-Hastings algorithm which modifies the proposal distribution of the Metropolis-Hastings algorithm via a screening stage to reduce the computational cost. The screening stage requires a cheap estimate of the log-likelihood and speeds up computation even in complex models such as Bayesian multivariate adaptive regression splines. Next, a partition model, constructed from a Voronoi tessellation, is proposed for conditional density estimation using logistic Gaussian processes. A Laplace approximation is used to approximate the marginal likelihood providing a tractable Markov chain Monte Carlo algorithm. In simulations and an application to windmill power output, the model successfully provides interpretation and flexibly models the densities. Last, a Bayesian tree partition model is proposed to model the hazard function of survival & reliability models. The piecewise-constant hazard function in each partition element is modeled via a latent Gaussian process. The marginal likelihood is estimated using Laplace approximations to yield a tractable reversible jump Markov chain Monte Carlo algorithm. The method is successful in simulations and provides insight into lung cancer survival rates in relation to protein expression levels.
    URI
    http://hdl.handle.net/1969.1/173405
    Subject
    Bayesian statistics
    Laplace approximation
    partition model
    Gaussian process
    Markov chain Monte Carlo
    survival analysis
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Payne, Richard Daniel (2018). Two-Stage Metropolis Hastings; Bayesian Conditional Density Estimation & Survival Analysis via Partition Modeling, Laplace Approximations, and Efficient Computation. Doctoral dissertation, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /173405.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV