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ABSTRACT

Bayesian statistical methods are known for their flexibility in modeling. This flexibility is

possible because parameters can often be estimated via Markov chain Monte Carlo methods. In

large datasets or models with many parameters, Markov chain Monte Carlo methods are insuffi-

cient and inefficient. We introduce the two-stage Metropolis-Hastings algorithm which modifies

the proposal distribution of the Metropolis-Hastings algorithm via a screening stage to reduce the

computational cost. The screening stage requires a cheap estimate of the log-likelihood and speeds

up computation even in complex models such as Bayesian multivariate adaptive regression splines.

Next, a partition model, constructed from a Voronoi tessellation, is proposed for conditional den-

sity estimation using logistic Gaussian processes. A Laplace approximation is used to approximate

the marginal likelihood providing a tractable Markov chain Monte Carlo algorithm. In simulations

and an application to windmill power output, the model successfully provides interpretation and

flexibly models the densities. Last, a Bayesian tree partition model is proposed to model the hazard

function of survival & reliability models. The piecewise-constant hazard function in each parti-

tion element is modeled via a latent Gaussian process. The marginal likelihood is estimated using

Laplace approximations to yield a tractable reversible jump Markov chain Monte Carlo algorithm.

The method is successful in simulations and provides insight into lung cancer survival rates in

relation to protein expression levels.
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NOMENCLATURE

MCMC Markov chain Monte Carlo

M number of partition elements

MH Metropolis-Hastings

n number of observations

ni number of observations in partition element i

p(· | ·) conditional distribution

p(·) probability distribution

RMSE root mean square error

T partition structure; either a tessellation or a tree

x covariate vector

xi covariate vector in partition element i

y vector of observed response variable

yi vector of observed response variable in partition element i
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1. INTRODUCTION

1.1 Statistics: A Melting Pot

The field of statistics is both vast and deep. It provides methodology for solving many problems

in a wide variety of fields, and has become an integral part of the scientific process. There are even

two separate philosophical mindsets (Bayesian and frequentist) which define how these statistics

are developed! This unique combination of breadth and depth make the field of statistics a true

melting pot of methodologies, theories, and applications.

In that same spirit, this dissertation is a melting pint – a smaller amalgamation of new devel-

opments in statistical methodology which vary in application and purpose. This dissertation has

applications in finance, green energy, and health as new methodologies are developed in statistical

computation, conditional density estimation, and survival analysis. The methods are tied together

through their common Bayesian perspective and emphasis on efficient computation.

This dissertation contains an introduction, three main chapters, and a conclusion. This section

provides a brief overview of Bayesian statistics and sets the stage for the three main chapters. The

second chapter discusses the two-stage Metropolis-Hastings (MH) algorithm which is designed to

speed up Markov chain Monte Carlo (MCMC) for large datasets. The third chapter introduces a

partition model to perform conditional density estimation. The fourth chapter extends this partition

model framework to model hazard functions in survival analysis. The fifth chapter gives some

concluding comments. Owing to the fact that each of the three methodologies presented require

very different literature reviews, a detailed literature review is contained within each of the three

main chapters rather than in the first chapter.

1.2 Bayesian Statistics

In the field of statistics, we are typically interested in making inference about parameters, θ,

which describe a population. In Bayesian methodologies, we model these parameters using a prior

distribution, p(θ), which represents our belief about where the parameters lie prior to observing
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data, y. We then utilize conditional probability to update our belief about θ based on the observed

data y. This updated understanding of θ is expressed in the posterior distribution

p(θ | y) =
p(y | θ)p(θ)

p(y)
(1.1)

which consists of the likelihood of the data, p(y | θ), the prior, p(θ), and the marginal likelihood

of the data p(y) =
∫
p(y | θ)p(θ)dθ. Depending on the forms of the likelihood and the prior, an

analytical solution for the posterior distribution p(θ | y) may exist. However, in more complicated

models, including hierarchical models, it is often the case that there is no closed form solution for

p(θ | y), usually due to the fact that the integral in the denominator of (1.1) is not tractable.

Fortunately there are algorithms which allow us to sample from the posterior distribution even

when we do not have an analytical form. If enough samples are generated, we are able to obtain

an approximation to the posterior via these samples. One common algorithm for sampling from

the posterior distribution is the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970) which largely came to the attention of Bayesian statisticians through the seminal paper of

Gelfand and Smith (1990). The MH algorithm involves calculating ratios of posterior distributions

with different parameters settings; therefore, the value of p(y) is canceled out and does not need

to be known.

1.2.1 Limitations of the Metropolis-Hastings Algorithm

There are, however, several limitations of the MH algorithm. When the dimension of θ is

large, the computational cost of the algorithm is increased. Furthermore, the algorithm may not

mix satisfactorily and therefore posterior inference may be limited. If the dataset is large, the

computational cost of the algorithm can become too large to complete in a reasonable amount of

time.

To overcome some of these issues, several general methods have been developed. One tech-

nique is to divide the data, run independent MCMC on each data subset, and then recombine

the posterior draws in some way (Scott et al., 2016). Other techniques include parallelizing the
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likelihood and subsampling techniques (Quiroz et al., 2014). Each of these techniques have their

limitations. For instance, the technique described by Scott et al. (2016) does not sample from the

true posterior distribution and has extra computational costs when dealing even with simple hier-

archical models. In our experience, subsampling methods can be computationally complex due

to the need to interpolate surfaces using either splines or Gaussian processes which adds an extra

layer of modeling.

At present, there is a need to reduce computational demand in the MH sampler while maintain-

ing its relative simplicity. Chapter 2 accomplishes this by introducing a two-stage MH algorithm

which is simple to implement while still retaining important theoretical properties.

1.2.2 Bayesian Partition Models

Partition models model data by partitioning the data and fitting separate models for each par-

tition element. Consequently, these models can have many parameters due to both the number of

partitions, and the complexity of the model in each data region. On the surface, partition models

may appear to be difficult to search via MCMC due to the large number of parameters. However,

they can often be searched efficiently by choosing priors such that the marginal likelihood, given a

specific partition (denoted T ), p(y | T ) has an analytical form. Consequently, only the parameters

defining the partition need to be searched via MCMC methods, typically using a reversible jump

MCMC algorithm (Green, 1995) to traverse the variable dimension of the parameter space. These

types of models have been used in a number of contexts including piecewise Gaussian processes

(Kim et al., 2005), classification and regression trees (Chipman et al., 1998), treed Gaussian pro-

cesses (Gramacy and Lee, 2008), and prediction using Voronoi tessellations (Holmes et al., 2005).

Partition models are appealing because they have a relatively simple form and can be very

flexible, particularly when using model averaging. They are “nonparametric” in the sense that

they are extremely flexible despite assuming a parametric model within each partition element.

Although the curse of dimensionality may be mitigated by marginalizing partition-element specific

parameters, care must be taken so that the reversible jump MCMC algorithm mixes across models

effectively. Parallel tempering (Geyer, 1991) has been used in the commonly multi-modal tree
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models by Gramacy (2007) and Gramacy and Taddy (2010) which generally eliminates the need

to restart the MCMC chain to allow it adequately explore various posterior modes (Chipman et al.,

1998).

To date, the majority (if not all) partition models choose distributions in each partition element

which provide an analytical solution for computing the marginal distribution of the data. This

is often chosen for computational convenience so that an efficient MCMC algorithm can be con-

structed. Unfortunately, by specifying such models, flexibility is often lost. In this dissertation,

we select a models which retain great flexibility in each partition element by specifying models

which do not have an analytical form for the marginal of the data. To maintain a tractable MCMC

algorithm, we approximate the marginal of the data by utilizing Laplace approximations, allowing

us to have both simple interpretation and model flexibility.

1.3 Organization

Chapter 2 provides a solution to the difficulties in the MH algorithm by using an approximation

of the likelihood to screen out “bad” proposals (i.e. proposals which are likely to be rejected) and

save on computational cost. It focuses on cases where the dimension of θ is relatively small, but

the number of observations is large, and develops methodology for reducing the computational

cost of the MH algorithm using a screening stage to modify the proposal distribution of the MH

algorithm. In Chapter 3 and Chapter 4 we shall encounter partition models with many param-

eters which cannot be marginalized. Without marginalization, reversible jump MCMC becomes

extremely slow since parameters in each partition element need to be sampled on each iteration of

the MCMC chain. Furthermore, reversible jump MCMC requires efficient proposal distributions

when changing the partition structure, which are difficult to construct. To overcome these issues,

the third and fourth chapters utilize Laplace approximations (Tierney and Kadane, 1986) to obtain

an approximate marginal likelihood so that an efficient MCMC search can be performed over the

partition space. Chapter 3 focuses on performing conditional density estimation in the partition

model framework using Voronoi tessellations whereas Chapter 4 uses a tree partition model to

perform survival analysis. Chapter 5 contains some concluding remarks and discussion.
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1.4 Notation

While care has been taken to keep notation similar across all three chapters, the differences in

the model formulations across the three chapters require some re-use of some symbols. Therefore,

please refer to each individual chapter for each symbol’s interpretation.
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2. TWO-STAGE METROPOLIS-HASTINGS FOR TALL DATA

2.1 Introduction & Literature Review

In the past twenty-five years, Bayesian statistics have become increasingly popular as they are

capable of analyzing data with complex structures. Consequently, Bayesian methods have been

proven to be effective in a wide range of applications. The rise in popularity is largely attributed

to simulation based algorithms which can approximate the complex posterior distributions of non-

conjugate models, such as Markov chain Monte Carlo (MCMC) methods including the Metropolis-

Hastings (MH) algorithm (Robert and Casella, 2013).

The term “tall data" generally describes data in which n >> p, that is, when the number of

observations is much larger than the number of predictors. For MCMC methods, as n increases,

so does the computational demand of the algorithm. Specifically, for MH, the increased compu-

tational demand is driven by the complete scan of the data through likelihood evaluations on each

iteration of the algorithm. If n is large enough, MCMC methods (including MH) are computation-

ally infeasible.

There are several general methods to overcome this issue. The simplest method involves paral-

lelizing the likelihood to speed up computation. Another method divides the data across multiple

machines and performs independent parallel MCMC on each machine to sample from the poste-

rior distribution (consensus Monte Carlo). The results are then aggregated using weighting (Scott

et al., 2016). A third approach is to use subsampling methods to provide a faster estimation of the

likelihood (Quiroz et al., 2014; Korattikara et al., 2014; Bardenet et al., 2014). See Bardenet et al.

(2015) for a review of MCMC approaches for tall data.

We propose a method based on a two-stage Metropolis algorithm which uses a cheap estimate

of the likelihood to determine if a full estimation of the likelihood is necessary. Furthermore, we

compare the strengths and weaknesses of the general tall data MH methods of consensus, sub-

*Reprinted in modified form with permission from “Two-Stage Metropolis-Hastings for Tall Data" by Payne,
Richard D., and Mallick, Bani K. (2018). Journal of Classification, 35(1). Copyright 2018 Classification Society of
North America.
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sampling, and two-stage Metropolis, as well as briefly introduce the use of a combination of the

consensus and two-stage methods. For definiteness, in the following, the focus of this chapter is

on the classification problem. However, the developed methodology can be extended to any model

which is suitable to analyze tall data. The methods are applied to three datasets: marketing data

from a Portuguese bank, loan data from Freddie Mac, and a simulated dataset. Logistic regres-

sion is applied to both the Portuguese bank and Freddie Mac datasets and an additional logistic

hierarchical model is fit to the Freddie Mac dataset. Modifications to the techniques described in

the papers above have been made to accommodate the features of these datasets and are explained

further. Lastly, the two-stage method is applied to a simulated binary classification problem using

Bayesian multivariate adaptive regression splines (BMARS).

In Section 2.2, we describe the existing methods for handling tall data and present the two-

stage methodology. Section 2.3 applies the methods to the marketing, Freddie Mac, and simulated

datasets. Section 2.4 provides a brief discussion and Section 2.5 concludes.

2.2 Methodology

We begin by briefly describing existing techniques to speed up MCMC computation for tall

data applications.

2.2.1 Likelihood Parallelization

Perhaps the simplest way to adapt the Metropolis-Hastings algorithm for tall data is to com-

pute the likelihood in parallel. In this method, the data are partitioned into M partitions and each

is assigned to a separate process/core. On each iteration of the MH algorithm, the master process

draws parameters from the proposal distribution and sends the proposed values to the other pro-

cesses. Each process then computes the likelihood for its partition and passes this information (i.e.

the sum of the log-likelihood) to the master process which sums the log-likelihood contributions

from each partition and determines whether or not to accept the proposal. As long as there is

no significant communication overhead between the processes, the MH algorithm’s speed will be

increased while still sampling from the true posterior distribution.
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2.2.2 Consensus Monte Carlo

In the consensus Monte Carlo method the data are randomly partitioned into M partitions.

Subsequently, allow each partition to run a full MCMC simulation from a posterior distribution

given its own data. Lastly, combine the posterior simulations from each partition to produce a set

of global draws to reproduce the unified posterior distribution.

Suppose y = (y1, . . . , yn) denotes the full data and yi is the data at the ith partition. We then

represent the posterior distribution of β as

p(β|y) ∝
M∏
i=1

p(yi|β)p(β)1/M

where the prior distribution has been expressed as the product of the M components.

For each partition, a Metropolis sampler with a chain of length m is computed in parallel with

the prior weight adjusted to M−1 its original weight. Once posterior samples are obtained from

each of the partitions, the results are combined using a weighted average. The weight, Wi, for the

ith partition is equal to the inverse of the posterior covariance matrix obtained from the Metropolis

sampler. Let βi be the posterior sample matrix from the ith partition. Thus, the final posterior

sample, β is obtained using the following weighted average:

β =

(
M∑
i=1

βiWi

)(
M∑
i=1

Wi

)−1

For details see Scott et al. (2016).

2.2.3 Subsampling Based Methods

In subsampling methods, a small subset of the data is used to estimate the likelihood function

which is then used to evaluate the acceptance probabilities of the MH algorithm. In principle, sub-

sampling reduces the data size and therefore a faster MCMC algorithm can be developed. Using

an unbiased likelihood estimate in the MCMC chain still provides the correct stationary distri-

bution (Andrieu and Roberts, 2009), however the efficiency of the MCMC chain depends on the
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variance of the estimator. Usually complete random sampling does not work well in this situa-

tion (i.e. the chain gets stuck for many iterations), but some general guidelines for estimating the

full likelihood from a subsample in a Bayesian setting have been developed. Quiroz et al. (2014)

suggest using a portion of the data prior to MCMC and fitting Gaussian processes or splines to ap-

proximate the log-likelihood. On each iteration of the MCMC chain, the log-likelihood is estimated

for each observation. The data are then sampled with probability proportional to its estimated log-

likelihood value, which reduces the variance of the estimator and improves the efficiency of the

chain.

2.2.4 Two-Stage Metropolis-Hastings

Consider the usual Bayesian model setup where the posterior distribution of the parameter β

given data y is given by

p(β|y) ∝ p(y|β)p(β) (2.1)

where p(y|β) is the likelihood function and p(β) is the prior distribution for the parameter vector

β. If a non-conjugate prior is selected, the posterior distribution p(β|y) often cannot be expressed

in an explicit form and consequently MCMC methods must be used to simulate samples from

this posterior distribution. More specifically, we use the Metropolis-Hastings (MH) algorithm to

generate samples of βs from p(β|y). The MH algorithm is described as follows.

A.1 MH Algorithm

1. At the tth iteration generate β from the proposal distribution q(β|βt) where βt is the current

state

2. Accept β as a posterior sample with probability

h(βt,β) = min
{

1,
q(βt|β)p(β|y)

q(β|βt)p(βt|y)

}
(2.2)

3. βt+1 = β with probability h(βt,β) and βt+1 = βt with probability 1− h(βt,β).
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At each iteration, the probability of moving from the state βt to next state β is q(β|βt)h(βt,β),

hence the transition kernel for the Markov Chain βt is

T (βt,β) = q(β|βt)h(βt,β) +

{
1−

∫
q(β|βt)h(βt,β)dβ

}
I(β = βt)

where I() is the indicator function. Due to the iterative nature of the algorithm, the likelihood

function p(y|β) needs to be evaluated repeatedly which is expensive when n is large. Hence, we

need to modify the MH algorithm to adapt it for tall data problems.

In the MH algorithm described in A.1, the evaluation of the likelihood is expensive in the tall

data situation. Generally the MCMC chain requires thousands of iterations to converge. Further-

more, we need to generate a large number of samples to quantify the uncertainty in the parameters.

We use the two-stage MH algorithm where the proposal distribution q() is adapted to the target

distribution using an approximate likelihood based model. These algorithms have been used pre-

viously (Christen and Fox, 2005; Higdon et al., 2002; Mondal et al., 2014), usually for solving

expensive inverse problems. For our purposes, instead of testing each proposal by the exact likeli-

hood based model directly, initially the algorithm tests the proposal by the approximate likelihood

based model which is much cheaper to compute. If the proposal is accepted by the initial test, then

an exact likelihood based computation will be conducted and the proposal will be further tested as

in the MH algorithm method described in A.1. Otherwise, the proposal will be rejected by the ap-

proximate model and a new proposal will be generated from q(). The approximate likelihood based

model filters the unacceptable proposals and avoids the expensive full likelihood computations.

A.2 Two-Stage MH Algorithm

Let p̂(y|β) be an approximation of the full likelihood, and let the approximate posterior distri-

bution be represented as p∗(β|y) ∝ p̂(y|β)p(β). Then the Two-Stage MH Algorithm proceeds as

follows:

1. At the tth iteration generate β
′

from the proposal distribution q(β
′|βt)
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2. Take a real proposal as

β =


β

′
with probability δ(βt,β

′
)

βt with probability 1− δ(βt,β
′
)

where

δ(βt,β
′
) = min

{
1,
q(βt|β

′
)p∗(β

′ |y)

q(β
′ |βt)p∗(βt|y)

}

3. Accept β as a posterior sample with probability

ρ(βt,β) = min
{

1,
Q(βt|β)p(β|y)

Q(β|βt)p(βt|y)

}
(2.3)

where Q(β|βt) = δ(βt,β)q(β|βt) + {1−
∫
δ(βt,β)q(β|βt)dβ}I(β = βt)

4. Hence take βt+1 = β with probability ρ(βt,β) and βt+1 = βt with probability 1−ρ(βt,β).

At each iteration, the probability of moving from the state βt to next state β is q(β|βt)ρ(βt,β),

hence the transition kernel for the Markov Chain βt is

T (βt,β) = q(β|βt)ρ(βt,β) +

{
1−

∫
q(β|βt)ρ(βt,β)dβ

}
I(β = βt).

In the above algorithm, if the trial proposal β
′

is rejected by the approximate posterior then no

further computation is needed. Thus, the expensive exact posterior computation can be avoided for

those proposals which are unlikely to be accepted. This is just an adaption of the proposal using the

approximate posterior where the transition kernel can be written as K(βt,β) = ρ(βt,β)Q(β|βt)

for β 6= βt and K(βt, {βt}) = 1 −
∫
β 6=βt ρ(βt,β)Q(βt|β)dβ for β = βt. It is simple to show

that the detailed balance condition p(βt|y)K(βt,β) = p(β|y)K(β,βt) is always satisfied under

some minor regularity conditions like the regular MH algorithm.

Result 1: The detailed balance condition is satisfied under the regularity conditions of the MH

algorithm. That is, p(βt|y)K(βt,β) = p(β|y)K(β,βt).
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Proof: When β = βt, the result is trivial. When β 6= βt we have

p(βt|y)K(βt,β) = p(βt|y)ρ(βt,β)Q(β|βt)

= p(βt|y) min

{
1,
Q(βt|β)p(β|y)

Q(β|βt)p(βt|y)

}
Q(β|βt)

= min {p(βt|y)Q(β|βt), Q(βt|β)p(β|y)}

= min

{
p(βt|y)Q(β|βt)
p(β|y)Q(βt|β)

, 1

}
p(β|y)Q(βt|β)

= ρ(β,βt)p(β|y)Q(βt|β)

= p(β|y)K(β,βt)

Result 2: The acceptance probability can be expressed as

ρ(βt,β) = min
{

1,
p∗(βt|y)p(β|y)

p∗(β|y)p(βt|y)

}

Proof: If β = βt then the result is trivial since ρ(βt,β) = 1. For β 6= βt

Q(βt|β) = δ(β,βt)q(βt|β)

=
1

p∗(β|y)
min{q(βt|β)p∗(β|y), q(β|βt)p∗(βt|y)}

=
q(β|βt)p∗(βt|y)

p∗(β|y)
δ(βt,β)

=
p∗(βt|y)

p∗(β|y)
Q(β|βt).

Substituting this in the expression of ρ(βt,β) we obtain the required expression.

It is important to note that the methodology above is general enough to be applied to any com-

putationally expensive MH sampler. However, for definiteness in following, the method is applied

to a few specific classification models. The success of the two-stage method in any given model

depends on the construction of a computationally cheap and accurate estimate of the likelihood.

The accuracy and speed of the likelihood estimator governs the efficiency of the MCMC chain.

For instance, if the likelihood estimator p̂(y|β′) severely underestimates p(y|β′), then δ(βt,β
′)
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will be small and the proposal will be rejected (even if it might be a reasonable candidate). On the

other hand, if p̂(y|β′) severely overestimates p(y|β′), then it will likely pass the first stage and get

rejected in the second stage since ρ(βt,β) decreases as a function of p∗(β|y) = p̂(y|β)p(β); thus

the algorithm will compute the full likelihood for an unfavorable candidate. Consequently, it is im-

portant to select an accurate approximation to the likelihood. Specific likelihood approximations

will be discussed for the examples in Section 2.3.

2.2.5 Combining Consensus with Two-Stage Metropolis-Hastings

For larger data sets which may not fit in RAM, we propose a combination of the consensus and

the two-stage Metropolis methods. This is identical to the consensus method with the exception

that each partition uses the two-stage Metropolis sampler rather than the usual Metropolis sampler.

Since two-stage MH will draw from the same distribution as MH on each partition, the results of

the consensus method will remain the same.

2.3 Applications

The methods introduced above were implemented on three datasets. For initial testing, the

methods were implemented on a relatively small dataset with just over 40,000 observations from a

phone marketing campaign conducted by a Portuguese bank. A larger dataset of approximately 2.3

million observations consisting of individual household loan data from Freddie Mac was used to

test how the methods scale. In both, logistic regression was used to classify observations, the latter

also employs a hierarchical model. Lastly, the two-stage method was implemented on a BMARS

model with a large (106 observations) simulated dataset.

2.3.1 Logistic Regression Model

We are considering a binary classification problem where the response y takes the value 0 or 1

where y = (y1, . . . , yn) and we have a vector of covariates x. We use a logit link function to link
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the jth response with the covariates as

yj | β,xj ∼ Bernoulli{π(xj)}

π(xj) = {1 + exp(−xjβ)}−1

β ∼ Multivariate-Normal(0,Σ0)

where β is the l dimensional vector of classification parameters, xj is the jth row of the design

matrix (i = j, . . . , n), and a Gaussian prior is placed on β. The model’s posterior distribution can

be expressed as p(β|y,x) ∝ p(y|x,β)p(β).

In the logistic regression models for both the Portuguese bank and Freddie Mac datasets, we

estimate the log-likelihood using a variant of the case-control approximate likelihood (Raftery

et al., 2012). To understand the approximation, it is important to realize the log-likelihood for a

logistic regression model can be written as two sums:

log{p(y|β,x)} =
∑
j:yj=1

{
θj − log(1 + eθj)

}
+
∑
j:yj=0

−log(1 + eθj) (2.4)

where θj = log{π(xj)/[1− π(xj)]} = xjβ.

If the data are sparse, then the computation of the first sum will be relatively cheap, and only the

second summation needs to be estimated. We use a subsampling method where a random sample of

a observations is taken from the failed outcomes (i.e. yj = 0). The second sum in (2.4) is estimated

by multiplying the average log-likelihood of the a sampled observations by n0 =
∑n

j=1 I(yj = 0),

the number of failures in the dataset. Let A be the index values of the subsample of size a. Thus,

the original log-likelihood is estimated as

l̂og{p(y|β,x)} =
∑
j:yj=1

{
θj − log(1 + eθj)

}
+
n0

a

∑
j∈A

−log(1 + eθj). (2.5)

We note l̂og{p(y|β,x)} is an unbiased estimate of the log-likelihood as E[l̂og{p(y|β,x)}] =

log{p(y|β,X)}. We could obtain an unbiased estimate of the likelihood by making a bias correc-

14



tion (Quiroz et al., 2014) but that is not necessary for our method as we are doing further filtering

of the proposal using the exact likelihood method.

The above approximation to the likelihood yields the following result:

Result 3: When the proposal β is promoted from the first stage, then for large a it can be shown

that ρ(·, ·) goes towards 1. Thus, the two-stage MH algorithm only calculates the original full data

likelihood when there is a high probability of acceptance of the proposal.

2.3.1.1 Portuguese Bank Data

The Portuguese bank dataset was obtained from the University of California Irvine Machine

Learning Archive and were analyzed in a recent paper by Moro, Cortez, and Rita (2014). The

binary dependent variable of interest was whether or not a client subscribed to a term deposit

after contact through a telephone marketing campaign. The predictor variables of interest were

the client’s previous promotion outcome (non-existent, failure, success), age (years), and type of

contact (telephone, cellular), education level (8 categories), and marital status (married, divorced,

single, unknown). The categorical variables were treated as nominal values and the continuous

variable age was logged and centered. A vague prior was placed on β resulting in the following

model:

yj | β,xj ∼ Bernoulli{π(xj)}

π(xj) = {1 + exp(−xjβ)}−1

β ∼ Multivariate-Normal(0,Σ0 = I ∗ 102)

where β is the vector of coefficients, Σ0 is the prior covariance matrix for β, I is the identity matrix

and xj is the jth row of the design matrix, j = 1, . . . , n.

The two-stage, consensus, and standard MH algorithms were coded in Fortran and run for

100,000 iterations with a burn in of 5,000 values. The subsampling method was considerably

slower and was consequently run for only 10,000 iterations with the same burn in of 5,000. In

the consensus method, the data were randomly split into 14 partitions. In the two-stage method,
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a single random subsample of 1,400 observations was taken prior to MCMC. This subsample was

used to approximate the log-likelihood during the first stage on each iteration of the two-stage MH

algorithm.

In the subsampling method, a thin-plate spline surface was fit to a subsample of the data (1,000

observations) prior to MCMC. For simplicity, in this smaller dataset, the thin-plate spline surface

treated the categorical predictors as continuous. Although this resulted in a somewhat crude ap-

proximation to the log-likelihood surface, using a subsample of around 7,000 observations on each

iteration allowed the MCMC chain to mix satisfactorily. To get a better idea of the speed of the

subsampling method if a better spline surface was fit, it was also run subsampling 100 observations

rather than 7,000. The number of likelihood evaluations per second for the MH and subsampling

method (100 and 7,000 observations) were 355, 23.9, and 1.8 respectively.

Figures 2.1-2.3 compare the posterior densities of the two-stage, subsampling and consensus

methods to the standard Metropolis sampler results. Figure 2.1 shows that the two-stage method

matches the results obtained by the unmodified MH algorithm which is expected based on the the-

oretical results above. Figure 2.2 indicates that the subsampling method was effective in capturing

the true posterior distribution since the subsampling method can be arbitrarily close to the true

posterior based on the subsample size (Quiroz et al., 2014). Figure 2.3 shows that the consensus

method matches the true posterior very well, with the exception of β10 and β15 which have a larger

spreads and are slightly biased. Interestingly, β10 and β15 are the coefficients for education (‘illit-

erate’), and marital status (‘unknown’) which have only 18 and 80 cases in the dataset respectively.

Paradoxically, as Scott et al. (2016) points out, we are suffering from a case of small sample bias in

a large dataset, which is a potential issue in consensus Monte Carlo applications. Since the Por-

tuguese bank dataset is relatively small (approximately 40,000 observations), we refer the reader

to the next section to better understand how these methods might scale to larger datasets, as well

as a more detailed comparison of the speed and efficiency of the methods.
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Figure 2.1: Posterior densities from the Portuguese bank data, two-stage Metropolis vs.
Metropolis-Hastings. The MH and two-stage MH methods are represented by the solid and dashed
lines, respectively.
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Figure 2.2: Posterior densities from the Portuguese bank data, subsampling vs. MH. The MH and
subsampling methods are represented by the solid and dashed lines, respectively.
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Figure 2.3: Posterior densities from the Portuguese bank data, consensus Monte Carlo vs. MH.
The MH and consensus Monte Carlo methods are represented by the solid and dashed lines, re-
spectively.
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2.3.1.2 Freddie Mac Data, Logistic Regression

The loan data from Freddie Mac was obtained in September 2015 from Freddie Mac’s website.

The data consists of approximately 2.3 million loans which Freddie Mac acquired during 2009-

2010 and contains monthly performance data on each loan. The binary dependent variable of

interest is whether or not a loan was foreclosed by the end of September 2014.

In order to understand and quantify the effects of various covariates on foreclosure, a logistic

model was used. Covariates of interest include the date of the first mortgage payment, FICO score,

debt to income ratio, original principal balance of the loan, and first-time home-buyer status (yes,

no, unknown). Each variable was transformed, centered, and scaled as appropriate. A vague prior

was placed on β yielding the following logistic model:

yj | β,xj ∼ Bernoulli{π(xj)}

π(xj) = {1 + exp(−xjβ)}−1 (2.6)

β ∼ Multivariate-Normal(0,Σ0 = I ∗ 102)

where β is the vector of coefficients, Σ0 is the covariance matrix for β, I is the identity matrix of

appropriate dimension and xj is the jth row of the design matrix, j = 1, . . . , n.

The coefficients of the model were estimated using the usual MH, consensus MH, and two-

stage MH algorithm, all of which were coded in Fortran. In order to provide a fair comparison with

the consensus Monte Carlo algorithm, both the MH and two-stage MH algorithm were parallelized

with M = 14 partitions as described in Section 2.2 using Open MPI for Fortran. In the two-stage

MH algorithm, the s observations used to approximate the log-likelihood in the first stage were

selected by randomly selecting s/M observations from each partition prior to the start of the MH

algorithm.

The subsampling MH method was not employed on the Freddie Mac dataset since it was not

likely to computationally competitive in this setting. Since the data are extremely sparse, the

likelihood can be easily calculated for the cases when yj = 1, so subsampling would only need
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Figure 2.4: Posterior densities from Freddie Mac data. MH, two-stage MH, and consensus MH.

to be employed when yj = 0. For full implementation, three separate spline surfaces would be

required to be fit for each category of first-time home-buyer status (no, yes, unknown). Even

if a relatively small sample was used for each spline surface approximation (e.g. several thousand

observations), the corresponding matrices to calculate the spline fits would be in total far larger than

the design matrix itself, and that computation is only the first step. Furthermore, the subsampling

method is not likely to see the gains of parallelization that the MH and two-stage MH algorithms

receive since more data will need to pass between processes and/or each process will have to

calculate the same information in parallel (which defeats the purpose of parallelization).

The usual MH, consensus, and two-stage MH algorithms were run for 100,000 iterations with a

burn-in period of 5,000. Parameters were updated sequentially and proposal variances were chosen

such that the acceptance rate for each parameter was near 50%. Figure 2.4 plots the densities of

the posterior distribution of β1, . . . , β7. The densities are essentially indistinguishable between the

MH, two-stage, and consensus methods. The execution times were 118, 115, and 81 minutes for

the parallelized MH, consensus, and two-stage methods, respectively. In this particular application,

the autocorrelation in the two-stage method was slightly more persistent than the regular MH
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algorithm. Consequently, it is of interest to evaluate the efficiency of the three MCMC chains,

accounting for autocorrelation. This can be done by measuring the effective draws per minute

(EDPM), which is a measure of the equivalent number of independent posterior draws per minute

the MCMC chain represents. The EDPM diagnostic incorporates both the execution time and

autocorrelation of the chain to measure its efficiency:

EDPM = t−1
(

m

1 + 2
∑∞

k=1 ρk

)

wherem is the number of MCMC iterations, t is the execution time of the MCMC chain in minutes,

and ρk is the autocorrelation at the kth lag of the chain. EDPM can be calculated by estimating ρk

with ρ̂k, the sample autocorrelation of the MCMC chain. In order to compare the efficiency of two

MCMC chains, we can compute the relative effective draws per minute (REDPM) as

REDPM =
EDPMAlgorithm 1

EDPMAlgorithm 2
.

Figure 2.5 plots the REDPM of the two-stage and consensus methods relative to the MH

method for each coefficient, β1, . . . , β7. Also plotted are the REDPM values for the MCMC chain

thinned by keeping every 10th and 20th values of the chain. We note that the two-stage method

had REDPM values which were always above 1, and with the exception of one parameter, was al-

ways above the REDPM values of the consensus method. The median REDPMs for the two-stage

method were 1.27, 1.44, and 1.47 as contrasted with 1.03, 1.07, and 1.02 for the consensus method

(no thinning, keeping every 10th and 20th observations respectively). Thus in this application, the

two-stage method appears to perform best in terms of speed, efficiency, and accuracy.

2.3.1.3 Freddie Mac, Hierarchical Logistic Regression

Bayesian statistics provide a simple way to fit hierarchical models, and with the help of MCMC,

estimation of the parameters is generally straightforward. In addition to the covariates in the pre-

vious logistic regression model, the Freddie Mac dataset specifies which bank originally serviced
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Figure 2.5: REDPM with respect to the MH algorithm for two-stage and consensus MH. REDPM
is plotted for the original MCMC chain and the chain thinned every 10 and 20 values.

the loan. It is of particular interest to understand how delinquency rates vary between banks during

this time period. In order to accomplish this, we specify the following hierarchical model:

yjk | θk,β,x ∼ Bernoulli{π(xjk)}

π(xjk) = [1 + exp{−(θk + xjkβ)}]−1

β ∼ Multivariate-Normal(0,Σ0 = I ∗ 102)

θk
iid∼ Normal(0, τ 2)

p(τ) ∝ τ−2

where β is the vector of coefficients (the same covariates as in (2.6) with an intercept), Σ0 is the

covariance matrix for the vague prior on β, I is the identity matrix of appropriate dimension, xjk

is the row of the design matrix corresponding to observation yjk, the jth loan originating from

the kth bank, and θk represents a random intercept term for the kth bank who serviced the loan,
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k = 1, . . . , 16, j = 1, . . . , nk. Lastly, Jeffrey’s prior was placed on τ .

In this model, interest lies primarily in the posterior distribution of τ , which provides us with

an understanding of the variability of loan foreclosure rates between banks after controlling for the

other covariates. For datasets which have relatively small n, the MH algorithm is straightforward

to implement on this simple hierarchical model. The two-stage method is also easily extended to

this hierarchical model, however, the consensus and the subsampling methods are not as easily

implemented.

The two-stage and the usual MH algorithms were successfully implemented. As before, the

data was partitioned into 14 partitions and the likelihoods were computed in parallel on each it-

eration. Both chains were run for 100,000 iterations with a burn-in period of 5,000. Parameters

were updated sequentially and proposal distributions were chosen such that the acceptance rates for

each parameter was near 50%. The two-stage method was implemented twice with sample sizes

of 224,000 and 22,400 observations which were sampled prior to running the algorithm (1000 and

100 data values from each bank on each partition, roughly 10% and 5% of data). The total run

times for the parallelized MH and the two-stage MH (10% and 5% subsample) were 1106, 849,

and 639 minutes, respectively. We note that the variance of the proposal distribution for the two-

stage MH with 5% subsampling was reduced (compared to the MH and two-stage MH with a 10%

sample) in order to obtain the desired acceptance rate of the MCMC chain.

As in the other two applications, the posterior densities for the MH and two-stage MH for the

24 parameters were within Monte Carlo error (since both the MH and two-stage MH algorithm

attain the correct stationary distribution). For brevity, we plot only the posterior distribution of τ

since it is the primary parameter of interest (Figure 2.6).

Figure 2.7 plots the REDPM values of the 24 parameters for the hierarchical model. We note

that the two-stage algorithm using 10% of the data consistently had REDPM values greater than

1, whereas using 5% of the data yielded more variability in the REDPM values, including 4 values

lower than 1 on the un-thinned MCMC chain. In the 5% sampling case, all the values of REDPM

< 1 were elements of β, not θ. This may be an artifact of the sampling design since sampling
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Figure 2.6: Posterior Distribution of τ for the MH and two-stage method subsampling 5% and
10% of the data.

was stratified by bank, and therefore some of the covariates may not have had adequate coverage

in the smaller sample size. Thinning improves REDPM most dramatically for low REDPM values

in the 5% sample, but otherwise doesn’t seem to cause any major shifts in REDPM. Overall, the

two-stage method showed increases in efficiency for the majority of the parameters.

The consensus method can be applied to this model as long as all the loans originating from

a particular bank are in the same partition. The method proposed by Scott et al. (2016) requires

running independent MCMC chains in parallel and then combining the draws of τ in the usual

manner, and then discarding the values of θ and β. Once the draws of τ are combined, these

values are sent to each partition which independently draw new values of β and θ from p(β|τ,X)

and p(θ|τ,X). In our case, however, these distributions are not in standard form and are not

easily sampled from. In implementation, the first consensus MCMC chain to obtain draws of τ

was faster than the traditional MH algorithm with a parallelized likelihood but performed more

slowly than the two-stage method (1106, 910, 849, 639 minutes for MH, consensus, and two-stage
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Figure 2.7: REDPM for the two-stage method with respect to the MH algorithm for subsample
sizes of 5% and 10%.

MH (10% and 5% subsampling) respectively). Since the speed of the first run of the consensus

method was slower than the two-stage method and the two-stage MH was more efficient than the

consensus method in the previous model, drawing values from p(β|τ,X) and p(θ|τ,X) was not

implemented.

The subsampling method can also in theory be applied to this model. However, this requires

fitting 48 spline surfaces prior to running the MCMC (16 banks, 3 levels of first-time home-buyer

status). These spline surfaces were fit using the methodology provided by Ma, Racine, and Yang

(2015) using a subsample of s = 16, 000 observations (1,000 observations per group). However,

on each iteration, approximating the log-likelihood surface for the entire dataset requires 48 matrix

multiplications of dimension zi × s,
∑48

i=1 zi = n − s − n1 = 2, 297, 813 − 3, 711 − 16, 000 =

2, 278, 102 where n1 =
∑
I(yi = 1). These matrices were too large to fit into RAM, thus we were

unable to implement the subsampling MH. Even if the data did fit into RAM, the computational

cost of estimating the likelihood contribution with splines would likely be greater than evaluat-
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ing the likelihood directly. Furthermore, implementing the subsampling method in parallel is not

likely to produce significant gains in computation time since it will require either calculating the

same quantities on each process (which defeats the purpose parallelizing) or passing vectors of

information (rather than scalars) between processes.

2.3.2 Bayesian Multivariate Adaptive Regression Splines

The two-stage method also has applications in more complicated classification settings, in-

cluding Bayesian multivariate adaptive regression splines (BMARS) (Friedman, 1991; Holmes

and Denison, 2003). BMARS is a non-linear classification method which is extremely flexible for

classification problems where the relationship between the response and covariates is complex, un-

known, or otherwise difficult for the analyst to specify. It uses the data to adaptively choose splines

and knots to flexibly model classification problems. Since the splines and knot locations are not

known a priori, BMARS requires the use of reversible jump MCMC (Green, 1995) to explore a

parameter space with varying dimension.

Even in this more complicated setting, implementing the two-stage MH requires only a few

extra lines of code, but can still produce a faster MCMC chain. To quantify the effectiveness of

the two-stage method using BMARS, one million observations were simulated from the following

model:

y ∼ Bernoulli{[1 + exp(−π(µ))]−1}

µ = x1 + x2 − x3 − x4 + x1x2 − .5x1x3 − x2x3 + .2x1x2x3;

x1 ∼ U(0, 1), x2 ∼ N(0, 1), x3 ∼ U(0, 2), x4 ∼ N(0, 22)

Where U(a, b) denotes a uniform distribution on the interval (a, b). The BMARS method was

implemented using the prior distributions outlined by Holmes and Denison (2003), to which we

refer the reader to their paper for details. The two-stage method was implemented by choosing a

random subsample prior to MCMC which was used in each iteration to approximate the likelihood.

The log-likelihood approximation in the first stage was calculated as l̂ = (n/a)lsub where n and
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Subsample Percentage SD Acceptance Rate Time (sec) Time Ratio
- .0005 .31 41,594 -

15 .0005 .18 28,134 .68
10 .0005 .15 27,422 .66
5 .0005 .12 25,384 .61
1 .0005 .06 25,144 .60
1 .0001 .21 28,261 .68

Table 2.1: The results of the BMARS MCMC with the two-stage BMARS MCMC. The first row
corresponds to the average of 5 runs of the usual BMARS algorithm to which the two-stage runs
are compared. The last column is the ratio of the two-stage time to the regular MCMC time in the
first row. Note that as the subsampling percentage decreased, the speed of the two-stage algorithm
increased while the acceptance rate decreased for a fixed proposal standard deviation (SD).

a are the number of observations in the whole dataset and subsample, respectively, and lsub is the

log-likelihood contribution of the subsample.

The BMARS algorithm was run a total of 10 times on this simulated dataset. The usual

BMARS algorithm was run 5 times and the average is summarized in the first row of Table 2.1. The

two-stage method was implemented on the remaining five runs with various subsampling percent-

ages. Once the priors are in place, there are only two parameters which need to be specified in the

BMARS method: the maximum number of interactions allowed for the basis functions (which was

chosen to be 3), and a tuning parameter (the proposal standard deviation of the spline coefficients).

From Table 2.1, it is clear that the two-stage method is faster than the usual BMARS MCMC,

with all two-stage runs producing a 30%-40% reduction in time. As with the previous examples,

as the subsampling percentage decreased, the acceptance rate of the two-stage MCMC chain de-

creased and the speed increased. When sampling only one percent of the data, the acceptance rate

was very low, so it was re-run with a smaller proposal standard deviation. This led to an increase

in the acceptance rate with a slight reduction in speed.

Due to the varying dimension of the parameter space during MCMC, comparing efficiency of

the MCMC chain is not straightforward. Consequently, to determine the effectiveness of the two-

stage method, one thousand observations were used as a test set, and the predictions based on both
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MCMC chains were compared and are shown in Figure 2.8. The top-left panel of Figure 2.8 com-

pares the predicted probabilities of two BMARS runs (neither implementing the two-stage method)

to provide a visual of Monte Carlo error. The two-stage method with 15%, 10%, and 5% subsam-

pling produced predictions which appear to be within Monte Carlo error of the usual BMARS

algorithm. The two-stage 1% subsampling (sd = .0005) showed slightly more variability and 1%

subsampling (sd = .0001) shows a fair amount of variability in the predictions. Interestingly, al-

though the predictions between the BMARS and two-stage methods become more variable as the

subsampling percentage decreased, the root-mean-square error (RMSE) of the predictions were

essentially the same (RMSE for the 5 BMARS runs: .0806, .0805, .0806, .0806, .0807; RMSE

for the 5 two-stage runs: .0807, .0806, .0808, .0804, .0806 for 15%, 10%, 5%, 1% (sd = .0005),

1% (sd = .0001), respectively). This gives further evidence that the two-stage method can still be

highly effective even when using a very small percentage of the data as a subsample.

2.4 Discussion

Perhaps the most pressing question regarding two-stage MH is how to select the subsample

size. From experience the authors note that for a fixed proposal distribution variance, decreasing

the subsampling percentage will at some point decrease acceptance rates of the MCMC chain. This

is due to the fact that the estimate of the likelihood is either overestimating or underestimating the

likelihood ratio which causes proposed parameter values to be discarded by either the first stage

(if the estimate of the likelihood ratio is too small) or the second stage (if the estimate of the

likelihood ratio is too large). If too small of a subsample is used, the variance of the proposal

distribution will need to be reduced to obtain the desired acceptance rate of the MCMC chain. A

smaller subsample will increase the speed of the chain, but will likely increase the autocorrelation

of the chain since the variance of the proposal distribution will need to be reduced. Even so, the

hierarchical model for the Freddie Mac data still performed well with sampling only 5%-10%

of the data, and the BMARS application performed well even with 1%-15% subsampling. This

indicates that the speed and efficiency of the two-stage method may be somewhat robust to the

subsample size used to approximate the log-likelihood.

29



0 0.5 1

BMARS

0

0.2

0.4

0.6

0.8

1

B
M

A
R

S

BMARS vs. BMARS

0 0.5 1

BMARS

0

0.2

0.4

0.6

0.8

1

T
w

o
-S

ta
g
e

15%

0 0.5 1

BMARS

0

0.2

0.4

0.6

0.8

1

T
w

o
-S

ta
g
e

10%

0 0.5 1

BMARS

0

0.2

0.4

0.6

0.8

1

T
w

o
-S

ta
g
e

5%

0 0.5 1

BMARS

0

0.2

0.4

0.6

0.8

1

T
w

o
-S

ta
g
e

1%, sd = .0005

0 0.5 1

BMARS

0

0.2

0.4

0.6

0.8

1

T
w

o
-S

ta
g
e

1%, sd = .0001

Figure 2.8: Comparison of the test-set predictions between the BMARS MCMC and the two-stage
BMARS MCMC for various subsampling percentages. The top-left panel compares the predicted
probabilities between two BMARS runs for a visual of Monte Carlo error.
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One of the main advantages of the two-stage method is its simplicity and ease of implementa-

tion. It requires taking only one subsample prior to the MCMC algorithm and then adding a few

lines of code to implement the first screening stage. Furthermore, it can be applied to any model

in which a computationally cheap estimate of the likelihood can be obtained. Even using naive

likelihood approximations, the two-stage method has performed well. If more precise likelihood

estimates can be acquired for a particular model, the two-stage method may be even more effective

at screening out bad proposals (although the speed will still depend on a computationally cheap

likelihood estimate).

The consensus method is also generally straightforward in simple models, but even in hierar-

chical models it places restrictions on how the data can be partitioned and may require sampling

from distributions which cannot be sampled from directly (which adds another potentially com-

putationally demanding layer). The subsampling method requires the most effort to implement

since it requires fitting spline surfaces to the data. Furthermore, these spline surfaces may require

very large matrix multiplications to provide the approximation to the likelihood surface on each

iteration of the MCMC.

The success of the two-stage method on the complex BMARS method indicates that it has

potential in many other applications. Other potential non-linear classification methods include

relevance vector machine (Tipping, 2001) and support vector machine models (Mallick, Ghosh,

and Ghosh, 2005). This can also be extended in a multivariate responses framework (Holmes and

Mallick, 2003). Perhaps most importantly, the two-stage method is not limited to classification

problems. It can be applied to any model where a computationally cheap and accurate approxima-

tion of the likelihood can be constructed.

2.5 Conclusion

The results from this chapter indicate there are a number of tall data Bayesian methods which

are effective in obtaining/approximating the posterior distribution more quickly than traditional

methods. Two-stage MH is simple to implement, fast, and overall more efficient than consen-

sus, subsampling, or unmodified MH algorithms in our applications. Combining two-stage MH
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with the consensus method shows promise for even larger datasets in which the data cannot fit in

RAM. Future extensions to this work include applying the method to handle more complicated

likelihoods, and finding better likelihood approximations which are still computationally cheap to

evaluate.
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3. A CONDITIONAL DENSITY ESTIMATION PARTITION MODEL USING LOGISTIC

GAUSSIAN PROCESES

3.1 Introduction & Literature Review

Conditional density estimation, sometimes referred to as density regression, is a method used to

estimate the conditional distribution of a response variable, y, given a vector of covariates, x. Many

common regression methods are special cases of conditional density estimation. For instance, the

Gaussian regression model assumes that the mean of y changes with x with the variance of y

being constant over the covariate space. Conditional density estimation is particularly useful when

a parametric form linking the covariate space x with y is unknown or violates the assumptions

of existing parametric methods. In its most flexible forms, conditional density estimation can be

viewed as a general nonparametric regression method.

There are a number of existing frequentist approaches to perform density regression including

kernel methods (Fan et al., 1996; Fu et al., 2011), spline methods (Kooperberg and Stone, 1991;

Stone et al., 1997), and mixtures of experts (Jacobs et al., 1991). There are also several Bayesian

approaches to conditional density estimation. One of the popular approaches is to use mixture

models for the conditional distribution of p(y | x) and allow the mixing weights as well as the

parameters to depend on the covariates (Chung and Dunson, 2009; Dunson and Park, 2008; Dunson

et al., 2007; Griffin and Steel, 2006). An alternative approach is to apply the logistic Gaussian

process model in the conditional density estimation setting (Tokdar et al., 2010). Latent variable

models have been utilized by Kundu and Dunson (2011) and Bhattacharya and Dunson (2010). A

multivariate spline based method (Shen et al., 2016) and an optional Polya tree based method (Ma

and Wong, 2011) have been recently proposed. Petralia et al. (2013) perform density regression

using a convex combination of dictionary densities using a fixed tree decomposition which scales

to accommodate a large number of features.

The method proposed in this chapter provides a novel partition model (Holmes et al., 2005;
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Denison et al., 2002) framework to perform conditional density estimation using logistic Gaussian

processes. The data are partitioned using a Voronoi tessellation on the covariate space x and the

distribution of y within each partition is modeled using a univariate logistic Gaussian process. The

primary goal of the partition model is to infer the partition structure. In other partition models, this

is typically done through selecting priors such that the parameters in each partition element can

be integrated out analytically, providing the marginal probability for the data y (Kim et al., 2005;

Denison and Holmes, 2001). The logistic Gaussian process model does not have an analytical form

for the marginal of y, but this can be estimated using a Laplace approximation (Riihimäki et al.,

2014), allowing an effective search of the posterior tessellation structure.

By construction, the partition model assumes that the distribution of y is piecewise constant

over the covariate space. This type of model is useful when it is known that the distribution of y

changes sharply over x. One notable motivating example is that of windmill power output where

the distribution of power output changes sharply across at least two covariates. Wind direction,

due to a wake effects, and wind speed, due to a limit on maximum power output both create sharp

changes in the distribution of y over short distances in the covariate space. Conditional density

estimation methods which assume that the density of y changes smoothly throughout the covariate

space are not designed to handle these sharp boundaries.

Philosophically, partition models are very different from models which assume a smooth change

in the distribution of y over x. Since partition models assume that the data within each partition

element are drawn from the same distribution, they provide marginal density estimates for regions

of the covariate space, not specific points. Indeed, it would be ideal if a partition model were

developed in which the model within each partition allowed the distribution to change smoothly,

allowing the model to coherently capture both sharp and smooth changes in y over x. The marginal-

ization of such models, however, would likely prove difficult, and further research is needed in this

area. Even so, we argue that one of the partition model’s greatest virtues is that of providing an

understanding of how the density of y changes over x, i.e., providing inference on the tessellation

structure.
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The proposed partition model provides insight into how and where the density of y changes

over x. In other conditional density estimation models, the user must specify which points in the

covariate space to view the density of y. It is possible when exploring the relationship between

y and x that interesting relationships may be missed due to the volume of x. Even in relatively

small covariate dimensions, say 5, exploring a grid of 3 points in each dimension leads to 35 =

243 different densities to view, leaving the researcher to determine and interpret how the density

changes over x, which may be difficult to understand even in relatively low dimensions. Further,

in this example, using only 3 points in each direction is an extremely sparse grid in 5 dimensions,

and it is possible that interesting relationships might be missed. On the other hand, the partition

model is designed to determine where important changes in y occur throughout x, providing greater

interpretability. Indeed, the model is similar in spirit to the Bayesian classification and regression

tree (CART) model (Chipman et al., 1998; Denison et al., 1998) as a decision tool to understand

how and where the density of y changes in different regions of x.

Although we are not the first to attempt to use a partition-type model structure for conditional

density estimation, we are the first to use logistic Gaussian processes within a Voronoi tessellation

partition to model conditional densities. Several tree methods have been proposed including Ma

(2017) and Petralia et al. (2013). Tree models can provide nice logical interpretations of partition

structures, however, they can become overly complex, even in low dimensions with few partition

elements, if the true partition structure is not oriented to the block partitions of the tree model. The

tessellation structure in this paper is more flexible than tree methods since it is constructed using a

weighted Euclidean distance, which allows the model to partition the covariate space into regions

of varying shapes, rather than sets of hyper-rectangles.

Logistic Gaussian processes have been used in other contexts to perform conditional density

estimation. Tokdar et al. (2010) use the logistic Gaussian process to model the joint distribution

of the response y and the covariates x and utilized a subspace projection method to reduce the di-

mension of the covariates. Conversely, we are fitting univariate logistic Gaussian processes within

each region of x, hence avoiding the curse of dimensionality. Furthermore, in joint modeling ap-
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proaches, y and x are not identified as the response and covariates. Our experience is that the

distribution of the response y is highly influenced by the distribution of x, especially when the

dimension of x is high.

Furthermore, this model does have important consistency properties which can be proved.

These results, developed by a colleague, while not included in this dissertation will be published

later. This will be, to the best of our knowledge, the first paper that considers the posterior consis-

tency in estimating conditional distributions in the partition model framework. Indeed, there are a

few papers which have considered theoretical properties of conditional density estimation models

using other modeling frameworks (Tokdar and Ghosh, 2007; Pati et al., 2013; Norets and Pelenis,

2012; Bhattacharya and Dunson, 2010).

In Section 3.2 we present the conditional density estimation model in a partition framework

and provide a reversible jump MCMC algorithm for estimation. Section 3.3 applies the method

to both simulated and real data; Section 3.6 provides some additional discussion and Section 3.7

concludes.

3.2 Bayesian Hierarchical Conditional Density Estimation Partition Model

3.2.1 Modeling the Partition Structures Using a Voronoi Tessellation

The partition model divides the p-dimensional covariate spaceD intoM distinct pieces where y

is assumed to independently follow a different density pi(·) within each partition. The partitioning

of the covariate space is done through a Voronoi tessellation. The tessellation is defined by M

centers c1, . . . , cM that divide the covariate space into M disjoint regions R1, . . . , RM where Ri

consists of all the observed x that are closest to center ci. Formally, Ri = {x ∈ D : ||x − ci|| <

||x−cj|| ∀ i 6= j}. Here, ||x|| = ||(x1, . . . , xp)|| =
∑p

i=1wix
2
i where w is a normalized weighting

vector,
∑
wk = 1, which places different weights on each of the covariates (Holmes et al., 2005).

The weighting provides additional flexibility in the class of tessellations. Figure 3.1 shows an

example of a Voronoi tessellation in two dimensions with w = (.5, .5).

For simplicity, we assume that the possible centers of the tessellation are restricted to the ob-
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Figure 3.1: A Voronoi tessellation in two dimensions with weight vector w = (.5, .5). The points
represent the 10 centers c1, . . . , c10 and the dashed lines represent the partition borders.

served data points x. Next, we assign prior distributions for both the number of centers as well as

the center locations. An intuitive way to express the prior is p(c,M,w) = p(c | M)p(M)p(w)

where

p(M) = DU(M | 1, . . . ,Mmax)

p(c |M) = DU
(
c | 1, . . . ,

(
n

M

))
p(w) = Di(w | 1, . . . , 1)

where DU(x | 1, . . . , n) means discrete uniform on 1, . . . , n and Mmax is the maximum number of

allowable centers, a hyperparameter chosen by the user. The prior on p(c |M) gives equal weight

to all possible combinations of M centers with possible center locations corresponding to the n

observed values of the covariates x. This prior penalizes larger models as long as M < bn/2c,

which should always be the case since one cannot adequately model the density in each partition
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element with so few points. The vector w has the Dirichlet prior which is uniform on the simplex.

3.2.2 Likelihood and Prior

Let yi = {yj : xj ∈ Ri, j = 1, . . . , n} be the set of ni observed response variables whose

covariates are in the ith region of the tessellation. We assume that within the ith region of the

partition the data, yi, independently follow a univariate logistic-Gaussian model (Lenk, 1988).

The logistic Gaussian process models the density using an exponentiated Gaussian process over a

bounded interval, Vi. Therefore, the data yi are assumed to be drawn independently from

pi(y) =
exp(fi(y))∫
Vi exp(fi(s))ds

(3.1)

where fi(·) is modeled with a latent Gaussian process as

fi(·) = µi(·) + gi(·),

gi(·) ∼ GP (0, κθi
(·, ·)),

µi(·) = h(·)Tβi, (3.2)

where κθi
(·, ·) is a covariance function which depends on the smoothing hyperparameter vector θi.

For simplicity in exposition, assume θi is known; its selection via empirical Bayes methods will

be detailed later in the paper. The function h(z) = (z, z2)T is used to encourage decreasing tails

in the density function pi(·). By placing a Gaussian prior on βi ∼ N(b, B), βi can be integrated

out to yield the marginal prior for fi(·)

fi(·) ∼ GP
(
h(·)Tb, κθi

(·, ·) + h(·)TBh(·)
)
.

While a full Gaussian process prior is attractive due to its flexibility, it does present some

computational challenges, particularly when trying to integrate out the latent function fi(·) to ob-

tain the marginal distribution of yi. To aid in providing a computationally feasible solution, Ri-
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ihimäki et al. (2014) approximate the logistic-Gaussian density via discretization. The bounded

region Vi is discretized into a regular grid of ri subregions centered at Zi = (zi1, . . . , ziri)
T . Note

that this discretization occurs over the range of y, not x, since the data model within each parti-

tion is independent of the covariates, x. The function fi(·) is evaluated at ri points in the vector

fi := (fi(zi1), . . . , fi(ziri))
T and the continuous density is approximated with the discrete version.

That is, the likelihood of an observation falling into the jth subregion would be

wj exp(fij)∑ri
j=1wj exp(fij)

(3.3)

where wj is the width of the region and fij = fi(zij), the jth element of fi. Note that since we are

using a regular grid, the wjs cancel out in (3.3). This leads us to the joint likelihood of yi as

p(yi | fi) = exp

{
y?i

T fi − ni log

(
ri∑
j=1

exp(fij)

)}

where ni is the length of yi, and y?i is a column vector of length ri with the jth element as the

number of elements of yi that fall into the subregion centered at zij .

Since we are modeling fi(·) as a Gaussian process it follows that fi has a multivariate normal

distribution

fi ∼ N(Hib, Ki +HiBH
T
i )

where Ki is a ri× ri matrix with j, kth element κθi
(zij, zik) and Hi is a ri× 2 matrix with jth row

h(zij)
T .

The partition model assumes independence between data in different partitions, therefore, the

posterior distribution can be expressed as a product

p(T, f1, . . . , fM | y) ∝ p(T )
M∏
i=1

p(yi | fi)p(fi)

where T = {M, c,w} represents the tessellation parameters. In our case, as in many other partition
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models, interest lies in searching the posterior of the tessellation, p(T | y). This is typically

accomplished using reversible jump Markov chain Monte Carlo (Green, 1995) after integrating

out the partition-specific parameters. In this framework we seek

p(T | y) ∝ p(T )
M∏
i=1

∫
p(yi | fi)p(fi)dfi

= p(T )
M∏
i=1

p(yi) (3.4)

Unfortunately, there is no analytical solution for the integrals, but they can be estimated via a

Laplace approximation. The Laplace approximation requires finding f̂i = arg maxfi p(yi | fi)p(fi)

via Newton’s method and using a Taylor expansion to construct the normal approximation. Indeed,

the model presented is constructed primarily by embedding the univariate model of Riihimäki et al.

(2014) into a partition model framework to infer the effect of covariates via the partition structure.

Indeed, Riihimäki et al. (2014) provides the form of the Laplace approximation to obtain p(yi) in

Equation (16) of their paper, to which we refer the reader for the specific details.

Lastly, we discuss the form of κθi
(·, ·) and the selection of θi in each partition. For the purposes

of this paper, we assume the covariance function κθi
(·, ·), which depends on hyperparameters

θi = (σi, li), is the stationary squared-exponential covariance function

κθi
(z, z′) = σ2

i exp

(
− 1

2l2i
(z − z′)2

)

where σi is the magnitude hyperparameter and li is a length-scale hyperparameter which together

govern the smoothness properties of fi(·). The value of θi is chosen via empirical Bayes by

maximizing the posterior p(σ, l | yi) = p(σ)p(l)
∫
p(yi | fi)p(fi)dfi, which we shall denote

θ̂i = (σ̂2, l̂2) in each partition. We choose two temporary hyperpriors, p(σ) and p(l), to guide

the selection of θi. We place a weakly informative half Student-t distribution with one degree of

freedom and a variance equal to 10 for the magnitude parameter and the same prior with a variance

of 1 for the length-scale hyperparameter (Riihimäki et al., 2014).
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As a review, computing the marginal distribution of y in Equation (3.4) given a tessellation is

done through the following steps:

• Given T = {M, c,w}, determine yi, i = 1, . . . ,M based on covariate values.

• For each yi, find θ̂i by maximizing p(yi) subject to the temporary hyperprior on θi and set

θi = θ̂i.

• Compute p(yi) in each partition via the Laplace approximation.

The next section describes the reversible jump Markov chain Monte Carlo algorithm for search-

ing the posterior of the tessellation.

3.2.3 Markov Chain Monte Carlo Algorithm

The posterior distribution of the tessellation structure, T , does not have an explicit form, thus

obtaining posterior draws of the tessellation proceeds using a reversible jump Markov chain Monte

Carlo algorithm (Green, 1995). A reversible jump algorithm is necessary due to the varying di-

mension of the parameter space of the tessellation structure. The algorithm to explore the posterior

of the tessellation has four possible moves, which are now briefly described.

• Birth: Add a new tessellation center randomly from x which is not currently a tessellation

center.

• Death: Randomly remove an existing tessellation center.

• Move: Randomly move an existing tessellation center to another value of x which is not

currently a tessellation center.

• Change: Randomly select an element of w, modify it according to q(·, ·), and normalize the

resulting vector.

In our implementation, we place an equal probability of 1/4 for each of the moves in the algo-

rithm, but these can be changed, if desired. Algorithm 1 in Figure 3.2 shows the pseudo code for
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performing the reversible jump algorithm. After choosing an initial tessellation, the algorithm con-

sists of iteratively choosing one of the four moves with probability 1/4, and accepting the proposed

moves with probability

α = min

(
1,
q(w | w(p))

∏Mp

i=1 p(yi)

q(w(p) | w)
∏Mc

i=1 p(yi)

)
(3.5)

where Tp is the proposed tessellation with Mp centers obtained from one of the four possible

proposals, Tc is current state of the tessellation with Mc centers, and q(· | ·) is the proposal used to

modify w. In our implementation, we set q(w | w′) to be a truncated-normal distribution centered

at w′ and truncated to allow only positive values; it applies only to the single element of w which

is modified in a change step. Note that the ratio involving q(· | ·) is 1 if a birth, death, or change

step is proposed, since w remains unchanged. The only tuning parameters for the algorithm are

the probabilities of proposing birth, death, move, and change steps and the proposal variance of

q(· | ·).

It is important to note that for most non-boundary cases, the prior on the tessellation structure

P (Tp) and P (Tc) does not appear in α due to cancellations with itself and the proposal distribution

for the birth, death, move, and changing weight steps in the reversible jump algorithm. When M

is at or near the boundary, however, adjustments to α need to be made in order to maintain the

reversibility of the Markov chain. When M = 1 and a birth step is proposed, we must multiply the

ratio in (3.5) by 3/4. When M = 2 and we propose a death step, the ratio must be multiplied by

4/3. The reverse must be applied when M = Mmax, Mmax − 1.

3.2.4 Parallel Tempering

As is common in many partition models, such as classification and regression trees (Chipman

et al., 1998), the mixing of the Markov chain may be poor due to multiple posterior nodes. In order

to overcome this potential issue, parallel tempering is used to better explore the posterior distribu-

tion. Gramacy (2007) and Gramacy and Taddy (2010) use parallel tempering in tree models, and

we employ a similar parallel tempering strategy.
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Algorithm 1. Reversible Jump Markov Chain Monte Carlo Algorithm
Initialize Tessellation;
for i← 1 to N do

Propose a birth, death, move, or change weight step with probability 1/4;
if birth step then

Propose a new tessellation center randomly from x which is not currently a center;
else if death step then

Randomly remove an existing tessellation center;
else if move step then

Move an existing tessellation center to a randomly chosen x which is not currently a
tessellation center;

else if change step then
Randomly choose an element of the weight vector w;
Modify the element of the weight vector using proposal distribution q(· | ·);
Normalize w such that

∑
wi = 1;

end
Accept the proposed change with probability α;

end
Discard burn-in period;

Figure 3.2: Reversible jump MCMC algorithm for the conditional density estimation partition
model.

To search the potentially multi-model posterior and to improve mixing of the Markov chain,

parallel tempering (Geyer, 1991) is used. The parallel tempering algorithm starts multiple re-

versible jump Markov chain Monte Carlo algorithms in parallel, each with a slightly different

target distribution, specifically

p(j)(T | y) ∝ p(T )

(
M∏
i=1

pi(yi)

)tj

where 1 = t1 > t2 > . . . > td ≥ 0 are called the inverse temperatures, and are chosen using the

sigmoidal ladder (Gramacy and Taddy, 2010). The algorithm proceeds by starting d parallel chains

with target distributions p(1)(· | ·), . . . , p(d)(· | ·). Once every l iterations, two adjacent chains

are randomly selected and switch partitions with a Metropolis-Hastings update with acceptance

43



probability

α2 = min

{
1,
p(j)(T j−1 | y)p(j−1)(T j | y)

p(j)(T j | y)p(j−1)(T j−1 | y)

}
where T j is the current tree on the jth process and T j−1 is the current tree on process j − 1.

The resulting chain for p(1)(· | ·) provides draws from the posterior distribution and explores the

parameter space more efficiently than a single reversible jump Markov Monte Carlo chain.

The parallel tempering is designed to encourage smaller partitions for smaller inverse tem-

peratures by tempering only the likelihood. This also has the advantage that we still have the

cancellation of the prior with the proposal distribution for a specific tempered distribution.

Parallel tempering speeds up the search of the posterior and allows an easier transition than

would be possible otherwise with a single chain. For instance, lower inverse temperatures gen-

erally have smaller partition sizes, allowing them to explore new weights and preliminary splits

of the covariate space. As promising tessellations are found, they are passed up to higher inverse

temperatures where additional refining is performed.

3.3 Simulations & Applications

3.3.1 Preliminaries

For our applications, we choose the maximum number of partitions to be Mmax = 10 to

maintain simplicity in interpretation as well as decreased computation. We set the hyperparam-

eters for β as b = (0, 0)T and B = 102I where I is the 2 × 2 identity matrix. We note

that each Zi, i = 1, . . . ,M , the grid upon which the density of y is discretized upon, is a sub-

set of a larger grid of 400 points Z? = {z?1 , . . . , z?400} with z?1 = min{min(y), ȳ − 3σ̂2} and

z?400 = max{max(y), ȳ + 3σ̂2} where ȳ and σ̂2 are the sample mean and variance of y. Specif-

ically, Zi = {z?j′ : z?j′ ∈ [min{min(yi), ȳi − 3σ̂i
2},max{max(yi), ȳi + 3σ̂i

2}], j′ = 1, . . . , 400}

where ȳi and σ̂2
i are the mean and standard deviation of the data yi. For our applications, we

standardize the covariates and the response variable to have mean of 0 and standard deviation of

1. This standardization allows us to use the priors selected generally without needing to adjust the

priors to account for the range of the data.
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Figure 3.3: The three densities found in each partition element of the simulated dataset.

3.3.2 Simulation

A total of 500 observations were simulated from the following model: X1, X2 ∼ U(0, 1) and

Y | X1, X2 ∼


Gamma(10, 2) if X1 > X2, X2 < .75

.5N(1, 1) + .5N(5, 1) if X1 < X2, X1 < .75

N(1,
√
.5) if X1 > .75, X2 > .75

where Gamma(a,b) is a gamma distribution with shape parameter a and rate parameter b and

N(µ, σ) denotes a normal distribution with mean µ and standard deviation σ. Figure 3.3 plots

the three densities. In this simulation, there is considerable overlap in the distribution of y in each

partition element, but the shape of the density of y is dramatically different. The Markov chain

Monte Carlo algorithm was run for 105 iterations. The partition with the highest posterior probabil-

ity is plotted in Figure 3.4 with the black lines indicating the true partition boundary. The method

performed extremely well in this setting and correctly captured the partition. The model also does

well in capturing the distribution within each partition element; see Figure 3.5.
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This dataset was analyzed by three other methods including dependent Bernstein polynomials

(Barrientos et al., 2017), linear dependent tail-free processes (Jara and Hanson, 2011), and the

Dirichlet process mixtures of normals method (Müller et al., 1996). All three methods are imple-

mented in the DPpackage in R, and generally assume that the density of y changes smoothly

as a function of the covariates – a very different assumption than the data generating model. The

methods were run for a 104 iteration burn-in period and kept every other draw for the next 40,000

iterations for a total of 20,000 posterior draws. Details on the hyperparameters used are included

in Section 3.5. Figures 3.6-3.8 compare the data generating and posterior densities at four differ-

ent covariate locations, {(.76, .76), (.9, .9), (.1, .8), (.8, .1)}. The (.76,.76) location is located on

the boundary of all 3 partition elements whereas the other 3 locations are away from it. At the

(.76,.76) location, all three methods generally fail to capture the true density as seen in the top left

panels. We found that the linear dependent tail-free process in Figure 3.6 generally does a poor job

in capturing the density. The dependent Bernstein polynomial model in Figure 3.7 does better at

the the (.1,.8) and (.8,.1) locations, but does not improve much at the (.9,.9) location as compared

with (.76,.76). This is most likely due to the fact that there is less data in this partition element. Ma

(2017) note that the performance of the Bernstein polynomial model in their piecewise examples

worsened as sample size increased and attribute these results to the fact that the Bernstien poly-

nomial model is designed to handle smooth changes in the density. The Dirichlet mixture model

in Figure 3.8 does the best of these three “continuous" methods, generally capturing the data gen-

erating distribution in its credible intervals for the (.1,.8) and (.8,.1) covariate locations. It also

performs noticeably better in the (.9,.9) case compared to the other two methods. Even so, this

method still fails near the boundary, and has larger credible intervals.

This dataset was also analyzed with a Voronoi partition model which assumes normality within

each partition element as described in Chapter 7 of Denison et al. (2002). The Markov chain ran for

80,000 iterations following a 20,000 iteration burn-in period. Since this partition model assumes

normality within each partition element, model averaging was employed to obtain the posterior

density at the same locations as the methods previously discussed. Figure 3.9 shows the results,
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Figure 3.6: The posterior mean density (dashed, bold), 95% credible intervals (dashed), and the
true density (solid, red) of the linear dependent tail-free process model.
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Figure 3.7: The posterior mean density (dashed, bold), 95% credible intervals (dashed), and the
true density (solid, red) of the linear dependent Bernstein polynomial model.
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Figure 3.8: The posterior mean density (dashed, bold), 95% credible intervals (dashed), and the
true density (solid, red) of the Bayesian Dirichlet process mixture of normals model.
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Figure 3.9: The posterior mean density (dashed, bold), 95% credible intervals (dashed), and the
true density (solid, red) of the Voronoi partition model which assumes a normal density in each
partition element.

49



which are similar to those of the linear dependent tail-free process in Figure 3.6. Details regarding

the location of the code and implementation can be found in Section 3.5.

A direct comparison of this dataset to other partition models was not possible since Petralia

et al. (2013) do not provide public code, and the code provided by Ma (2017) lacks adequate

documentation at the time of this writing. However, we will replicate one of the scenarios in Ma

(2017) next.

3.3.3 Comparison with Optional Polya Trees

Although we were unable to use the code from Ma (2017) due to inadequate documentation,

we did replicate one of their examples and applied our method to it. The data are simulated from

the following model:

X ∼ Beta(2, 2)

Y | X < .25 ∼ Beta(30, 20)

Y | .25 ≤ X ≤ .5 ∼ Beta(10, 30)

Y | X > .5 ∼ Beta(0.5, 0.5).

Ma (2017) implement their model using sample sizes of 100, 500, and 2,500 observations.

With 100 observations, their method found the correct partition via a tree partitioning structure, but

they note that 100 data points is insufficient to adequately estimate the distribution in each partition

element. We simulated 100 data points from the same model and implemented our method running

the Markov chain for 104 iterations. The partition with the highest posterior probability correctly

captured the true partition with 100% correct classification of the points. Furthermore, our method

did a good job in modeling the density in each partition. Figure 3.10 shows the 95% credible

intervals containing the true density a majority of the time, despite such a small sample size.
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Figure 3.10: The posterior mean density (solid), 95% credible intervals (shaded), and the true
density (dashed, blue) in the three posterior partition elements.

3.3.4 Smooth Changes

To demonstrate the partition model’s performance on data where the density changes smoothly

as a function of the covariates, 500 realizations of the vector (Y,X1, X2) were simulated from a

trivariate normal distribution with mean (1, 5, 7.5) and covariance matrix

Σ =


1 .5 .1

.5 1 .5

.1 .5 1

 .

The Markov chain was run for 105 iterations. Figure 3.11 shows the partition with the highest

posterior probability in the top left panel, the other three panels plot the posterior mean, 95%

credible intervals, and the true distribution at the tessellation center. Since we are estimating

the marginal density of y in each region, there is no guarantee that the true distribution at the

tessellation center will be contained in the credible intervals. Even so, the bottom two panels show

that the credible intervals generally contain the distribution of the tessellation center whereas the

top right panel performs slightly worse. Regardless, the partition model is performing as expected:

it is identifying that both X1 and X2 influence the distribution of y and capturing general shifts in
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Figure 3.11: The top-left panel plotsX2 againstX1 with colors/symbols denoting the partition with
the highest posterior probability. The remaining panels plot the posterior mean density (solid), 95%
credible intervals (shaded), and the density (dotted, blue) at the tessellation centers in each partition
element.

the distribution over the covariate space.

3.3.5 Windmill Data

Conditional density estimation is particularly useful when it is unclear how the density of y

changes with respect to the predictors, x. The exact relationship of electrical power output in

windmills to covariates measuring wind speed, wind direction, air density, wind sheer, & turbu-

lence intensity is unknown, but is believed to nonlinear. Furthermore, the conditional density of

power output is known to have sharp changes as a function of wind speed and direction. For in-

stance, modern wind turbines employ a pitch control mechanism to protect the generator under

high wind. When the wind speed is high enough, the turbine blades start turning more parallel to

the wind direction to reduce the energy absorption capability. Thus, for very high wind speeds, the

power output is concentrated near a maximum power level. Sometimes, this dramatic change from
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Figure 3.12: A plot of normalized power output against wind speed (m/s).

a very broad and often skewed distribution to a very narrow distribution can happen within a wind

speed range of just 1 m/s. The dramatic change in the spread of power output as a function of wind

speed can be seen in Figure 3.12.

Wind speed is not the only covariate which induces sharp changes in the distribution of power

output. When terrain is not flat and smooth, there may also be sharp changes in power output as a

function of wind direction, as the wind is affected by the terrain surrounding the turbine. When a

wind turbine is downwind from another turbine, there is the potential for a wake effect which can

also create sharp changes in power output over wind direction. Since the locations of turbines are

fixed, changes in the wind direction will influence which turbines are downwind and thus influence

the wake effect. Combining all of these effects together, we expect sharp changes in wind speed to

occur in both the wind speed and wind direction. The wind turbine dataset consists of aggregated

measurements of windmill power output and several covariates over 10 minute increments from

a single turbine, consisting of 10,000 observations randomly sampled from a larger dataset. We

analyze the wind turbine dataset in order to estimate the distribution of power output in various

regions of the covariate space in order to better understand where the most dramatic changes occur.

The partition model was fit to the data using 5 covariates: wind speed, wind direction, air density,
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Figure 3.13: Wind direction plotted against wind speed with colors denoting the partition elements
of the tessellation with the highest posterior probability. Wind speed describes the majority of the
changes power output. Near a wind direction of 120 degrees, there is a sharp shift in the distribution
of power output which is captured by the tessellation. Overlaps and blurred edges of the partitions
indicate the role of other covariates in determining the partition structure.

wind sheer, & turbulence intensity. The reversible jump Markov chain Monte Carlo algorithm was

run for 100,000 iterations.

Figure 3.13 shows the tessellation (in 2 dimensions) with the highest posterior probability. The

partition structure identifies major changes across wind speed, and also identifies one interesting

change across wind direction at about 120 degrees. This dramatic change in power output at about

120 degrees is believed to be caused by a wake effect from another turbine. Specifically, it is

believed that the wake effect may have caused the instruments measuring wind speed to underesti-

mate wind speed when the turbine is oriented at about 120 degrees. Figure 3.14 shows the posterior

densities in four regions of the tessellation.
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Figure 3.14: These four posterior densities with 90% credible intervals (shaded) show the dramatic
changes in location, spread, and shape of the marginal density of normalized power output over 4
of the 10 partitions in the final posterior tessellation.

The code to run the partition model in the above examples was written in Matlab and utilizes

portions of the excellent code developed by Vanhatalo et al. (2013).

3.4 Markov Chain Monte Carlo Mixing

Here we discuss the Markov chain performance using parallel tempering with 8 chains. We

begin with a discussion of the first simulated example in Section 3.3.2. Figure 3.15 shows the

traceplot for the log posterior for the untempered chain. It indicates that the posterior quickly

attains the correct posterior node.

Our experience indicates that parallel tempering dramatically speeds up the discovery of true

partitions in simulated examples. Even so, the difficulty of slow mixing of individual chains per-

sists across individual temperatures. Even the chain with smallest inverse temperature of .1 only

accepted 5% of birth steps, but accepted 86%, 96%, and 99% of death, move, and change steps,

respectively. The high acceptance rates of the latter three moves is mostly due to the fact that

the chain generally only had one partition, so the move and change steps acceptances are inflated
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Inverse Temperature Birth Death Move Change
1 0.0001 0.0001 0.0007 0.2890

.98 0.0002 0.0000 0.0011 0.2912

.94 0.0001 0.0002 0.0010 0.3087

.85 0.0003 0.0002 0.0009 0.3471

.67 0.0009 0.0006 0.0038 0.4803

.43 0.0008 0.0008 0.0066 0.6386

.22 0.0054 0.0054 0.0384 0.7970
.1 0.0501 0.8591 0.9554 0.9872

Table 3.1: Proportion of accepted moves for each inverse temperature for the simulation in Section
3.3.2.

since they will always be accepted when the partition size is 1. Table 3.1 shows the proportion of

acceptances for each inverse temperature. Swapping rates of the chains were generally higher for

higher inverse temperatures and lower for lower inverse temperatures. This is likely due to the fact

that the higher inverse temperatures are generally closer together which promotes more mixing.

The swap percentages for each inverse temperature are shown in Table 3.2.

Inverse Temperature 1 .98 .94 .85 .67 .43 .22 .1
Proportion Accepted 0.9463 0.8998 0.6887 0.4512 0.3758 0.4316 0.2626 0.0355

Table 3.2: The acceptance proportion of swapping the tempered chains. Higher inverse tempera-
tures typically had higher swapping rates.

Since our main aim is to find one suitable partition for interpretation, a good estimate of the

maximum of the posterior will generally suffice. If we were to employ this model to perform some

sort of model averaging, the slow mixing would certainly be a major concern.

In the simulated examples in the paper, multiple restarts of the chain resulted in the same par-

titions being obtained. For the windmill data, the Markov chain was run a second time with some

slight changes. First, the minimum inverse temperature was set to .02 instead of .1. Second, the

variance of the proposal distribution for the weights was decreased. In this second run of the chain,
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Figure 3.15: The traceplot of the log posterior for the untempered chain for the simulation in
Section 3.3.2.

a slightly different partition was discovered with a higher maximum log posterior. Qualitatively,

however, both runs indicated the same general result highlighting the shift in the distribution near

a wind direction of 120 degrees.

For the smooth simulation in Section 3.3.4, the acceptance rates were generally better, but still

poor overall. We believe these improved acceptance rates are due to the smoothness of the data

generating model. Rates for birth and death steps range between 5-10% for the lower inverse-

temperatures, indicating that these are doing the majority of the searching of the parameter space.

Table 3.3 shows the acceptance proportions for each inverse-temperature. Figure 3.16 shows the

traceplot for the untempered chain.

For the windmill data, we see similar results as the previous datasets in terms of mixing. The

main difference, is that birth steps were accepted with a very high rate for all of the parallel chains.

This high acceptance, with corresponding low acceptance for death steps, is due to the fact that the

chains almost always had the maximum allowable number of partitions, in this case 10. Therefore,

whenever a death step was accepted, the model quickly accepted a birth step to increase the number

of partitions back to 10. The results are shown in Table 3.4. Note that if we look at the total number

of acceptances over all the chains divided by the total number of iterations, we have an effective
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Inverse Temperature Birth Death Move Change
1 0.0209 0.0214 0.0052 0.5681

.98 0.0208 0.0209 0.0051 0.5784

.94 0.0227 0.0223 0.0064 0.5866

.85 0.0216 0.0214 0.0055 0.6307

.67 0.0145 0.0147 0.0078 0.6995

.43 0.0065 0.0063 0.0156 0.7891

.22 0.0764 0.0980 0.3134 0.9197
.1 0.0303 1.0000 0.9850 0.9909

Table 3.3: Proportion of accepted moves for each inverse temperature for the simulation in Sec-
tion 3.3.4
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Figure 3.16: The traceplot of the log posterior for the untempered chain for the simulation in
Section 3.3.4.
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Inverse Temperature Birth Death Move Change
1 0.7059 0.0001 0.0008 0.0079

.98 0.4500 0.0001 0.0011 0.0063

.94 0.4412 0.0001 0.0014 0.0058

.85 0.3871 0.0001 0.0012 0.0083

.67 0.4000 0.0001 0.0014 0.0107

.43 0.3750 0.0001 0.0018 0.0171

.22 0.3750 0.0001 0.0022 0.0401
.1 0.1592 0.0015 0.0135 0.1180

Table 3.4: Proportion of accepted moves for each inverse temperature for the windmill data.
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Figure 3.17: The traceplot of the log posterior for the untempered chain for the windmill data. The
right panel shows the traceplot with the first 10,000 iterations omitted.

global search acceptance rate of 8%. Figure 3.17 shows the traceplot for the untempered chain.

In regard to mixing, the chain generally finds good posterior modes quickly, but then has a hard

time mixing between modes. In our view, this is due to two reasons: the presence of multiple sharp

modes, and the volume of the covariate space. Often when new modes are found, the new mode

is substantially higher than the previous mode, making it unlikely that the previous mode will be

returned to in the Metropolis-Hastings algorithm. Second, once at a new posterior mode, finding

another mode with higher posterior probability can be difficult due to volume of the covariate space
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and a potential lack of posterior mass between the current tessellation and a tessellation with higher

posterior probability.

A potential improvement to mixing may be possible adding or modifying the proposal distribu-

tions to add more recursive-type splits of existing tessellations. Indeed, something along the lines

of Holmes et al. (2005) may yield better mixing. Despite the slow mixing, the partition model is

still effective in finding partitions which describe how the density of y changes over the covariate

space.

3.5 Competing Methods Detail

For the methods in the DPpackage in R, the following code shows the prior selections used in

the code. Please see the documentation for the functions for more details regarding the specific

parameterization.

For the linear dependent Bernstein polynomials (Barrientos et al., 2017), implemented in the

LDBDPdensity() function, the prior structure was

prior <- list(lambda=25,

maxn=25,

alpha=1,

m0=rep(0,3),

S0=diag(3)*10ˆ3,

nu=5,

psiinv=diag(3)*10ˆ3)

The linear dependent tail-free process method (Jara and Hanson, 2011) was implemented with

the LDTFPdensity() function with prior
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prior <- list(maxm=6,

a0=5,

b0=1,

mub=0,

Sb=diag(3)*10ˆ 3,

tau1=10ˆ (-4),

tau2=10ˆ (-4))

The Dirichlet process mixtures of normals method (Müller et al., 1996) was implemented with

the DPcdensity() function. Assume that dat is a data.frame with the realized Y in the first column

and X1 and X2 in the second and third columns. The prior was selected as

w = cov(dat)

wbar = apply(dat,2,mean)

prior <- list(a0=1,

b0=.01,

nu1=2 + ncol(dat),

nu2 = 2 + ncol(dat),

psiinv2=2*solve(w),

tau1=6.01,

tau2=2.01,

m2=wbar,

s2=.5*w)

The code for the Voronoi tessellation with a normal distribution in each partition element was

obtained from the following website where the default options were used:

http://www.stat.tamu.edu/˜bmallick/wileybook/book_code.html
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3.6 Discussion

Although the partition model is specifically designed for models with an abrupt change in the

distribution of y over some portion of the covariate space, it is still useful in contexts where the

density of y is believed to vary smoothly as a function of x. For instance, most conditional den-

sity estimation techniques require manually exploring the conditional density by choosing various

points throughout the covariate space. Even in low dimensions, an effective search of the en-

tire covariate space is not practical due to the volume of the covariate space. Furthermore, the

method of choosing the points in the covariate space is generally ad hoc and at the discretion of

the modeler, allowing for the possibility of missing interesting features of the response-covariate

relationship. The partition model framework searches the covariate space to determine where sig-

nificant changes occur, creating a cohesive framework for understanding how the density of y is

influenced by the covariates. Indeed, the partition model can be used to verify that interesting

regions have not been overlooked.

An additional benefit to this partition model is the flexibility in modeling the density in each

partition element. In more parametric models, including other partition models, even if the correct

partition or other model structure is obtained, parameter estimates and/or densities may not be

modeled well due to the rigid parametric assumptions. We saw this phenomenon demonstrated in

the failure of the normal Voronoi partition model to capture bi-modality in the simulated example

in Section 3.3.2. In our partition model, if for some reason the partition is incorrectly found, the

flexibility in modeling the density will still reveal an accurate picture of the marginal density in

that region.

Perhaps one of the greatest drawbacks of the present model is the computational burden. Al-

though obtaining the Laplace approximation is relatively efficient using Newton’s method, it still

involves solving multiple systems of linear equations. This alone would not be overly prohibitive,

however, this process needs to be repeated multiple times when optimizing σ and l in each partition

element. Further, when making any change to the tessellation, potentially every partition element

will have a different set of data, requiring the marginal to be recomputed. A more recursive parti-

62



tioning strategy would limit this additional burden, and is an area for further research.

3.7 Conclusion

The combination of logistic Gaussian process density estimation with partition modeling pro-

vides an excellent framework for determining how and where the density of y changes over the

covariate space. Furthermore, it has desirable consistency properties. The applications of this

model will help analysts determine which variables are important in predicting the density of y,

as well as better estimate the density of y over the covariate space. This flexible method will help

give greater insight into datasets in which the relationship between the density of y and x is un-

known or difficult to formulate parametrically. As part of our contribution, we provide publicly

available software to perform Bayesian conditional density estimation. The code is available at

https://github.com/richardbayes/bayes-cde.

63



4. A SURVIVAL TREE PARTITION MODEL USING LATENT GAUSSIAN PROCESSES

AND LAPLACE APPROXIMATIONS

4.1 Introduction & Literature Review

In this chapter, we use the principles of partition modeling demonstrated in the previous chapter

to construct another partition model to estimate survival functions. Latent Gaussian processes and

Laplace approximations are used in a similar manner to obtain the marginal distribution so an

efficient MCMC algorithm can be developed. A notable difference is the choice of partitioning,

which is done through the construction of a tree model.

Consider survival times yj , censoring indicators δj , and covariates xj , j = 1, . . . , n where δj is

1 if yj is observed and 0 if yj is right censored. We assume that the data can be partitioned into M

partition elements y1, . . . ,yM such that
⋃M
i=1 yi = y and yi ∩ yi′ = ∅ for all i 6= i′. We further

assume that the data within a partition element are conditionally independent given the hazard

function, hi(t), the hazard function of the ith partition element and assume that the M hazard

functions are mutually independent. We construct the partition using a tree structure similar to that

of the original Bayesian classification and regression tree papers (Chipman et al., 1998; Denison

et al., 1998). The piecewise-constant hazard function at each terminal node is modeled flexibly

using an exponentiated Gaussian process, and the trees are efficiently searched via MCMC by

obtaining the marginal likelihood of the observed data via a Laplace approximation (Tierney and

Kadane, 1986).

One of the main benefits of tree models is arguably their ease in interpretation. Indeed, there

are a variety of other tree models which have been developed for use in survival and reliability

models. Levine et al. (2014) present some methodology for modeling tree survival functions with

correlated observations. Barrett and Coolen (2013) use an empirical Bayes approach by using

Gaussian process regression on transformed survival times. Garg et al. (2011) utilize a frequentist

approach to cluster hospital stays using survival trees and Loh et al. (2015) use regression trees to

64



identify subgroups with differential treatment effects.

Tree models have also been used for prediction. Clarke and West (2008) use empirical Bayes

priors and ensembles of Weibull tree models to model survival distributions. Other ensembles of

trees used for prediction use various forms of Bayesian additive regression trees (BART) (Chip-

man et al., 2010). Bonato et al. (2010) utilize BART to estimate latent parameters in a gamma

process (Kalbfleisch, 1978), Weibull, and accelerated failure time models; Henderson et al. (2017)

use BART in conjunction with a mean-constrained Dirichlet process mixture model to analyze

heterogeneous treatment effects, which is reminiscent of Kuo and Mallick (1997); Sparapani et al.

(2016) model survival times using a BART probit regression approach. Survival, relative risk, and

rotation forests have also been used to make mortality predictions (Ishwaran et al., 2004; Hothorn

et al., 2005, 2006; Ishwaran et al., 2008; Zhou et al., 2015).

The majority of Bayesian tree approaches in survival analysis focus on prediction by using

BART or ensembles. One purpose of the proposed methodology is to provide a Bayesian tree

framework which is simple to interpret (i.e. obtaining one tree) and flexible, i.e., moves beyond the

proportional hazards model (Cox, 1972). Indeed, although Gaussian processes have been utilized

in modeling survival data, these methods do not move beyond the proportional hazards framework

(Martino et al., 2011; Joensuu et al., 2012; Fernández et al., 2016). Our method provides the simple

interpretation of a single tree while simultaneously modeling the survival function flexibly.

The paper is organized as follows: Section 4.2 describes the model, Section 4.3 details the

MCMC algorithm, Section 4.4 shows some simulated examples and an application to a lung cancer

dataset and Section 4.5 provides some discussion and concludes.

4.2 Model

4.2.1 Prior on Tree Partition

The tree partition is constructed through a series of recursive binary splits of the covariate

space, which is explained in detail by Chipman et al. (1998). We adopt the same prior as Chipman

et al. (1998) which is constructed by splitting the tree nodes with a designated probability and
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assigning a rule each time a node is split. Let Si′ equal 1 if the i′th node is split, otherwise 0,

i′ = 1, . . . , 2M − 1 where M is the number of terminal nodes on a tree. Let Rj′ = (vj′ , rj′),

j′ = 1, . . . ,M − 1 represent the rules of the M − 1 internal nodes. Here, vj′ ∈ {1, . . . , p}

indicates which variable is to be split, and rj′ is the splitting rule on the vj′th variable. Let T =

(S1, . . . , S2M−1, R1, . . . , RM−1) be the collection of split indicators and rules for a particular tree.

Then the prior for a tree, T , can be evaluated as

p(T ) =
2M−1∏
i′=1

p(Si′)
M−1∏
j′=1

p(Rj′). (4.1)

Following Chipman et al. (1998), we define p(Si′ = 1) = 1 − P (Si′ = 0) = γ(1 + di)
−θ

where di′ represents the depth of the i′th node (e.g. the root node has a depth of 0). Here, γ and

θ are hyperparameters chosen by the researcher and provide guidelines for the general shape of

the tree (see Chipman et al. (1998) for details). Also, p(Rj′) = 1/(mj′m
?
j′) where mj′ represents

the number of variables on the corresponding node that are available for splitting and m?
j′ is the

number of splitting rules available on the selected variable for the node to which the rule belongs.

In the present formulation, the prior is dependent upon the observed data values. That is, when

assigning any node a rule, the available splitting values are taken from the data which reach that

node from its ancestry. Take, for example, a simple tree that consists of the root node and two

child nodes. For simplicity, suppose we observe 10 observations {(x1, y1), . . . , (x10, y10)} where

(x1, . . . , x10) = (1, . . . , 10). If we restrict rules for continuous variables to the form x ≤ ri, the root

node has 9 possible splitting rules which yield non-empty terminal nodes: {1, . . . , 9}. Suppose the

root node has the rule R0 = (1, 3), i.e. x ≤ 3, then all the yi whose xi is less than 3 would descend

to the left child node and all others would descend to the right child node. The left child node now

has three data points and two possible splitting values, {1, 2}, and the right child has seven data

points and six possible splitting rules {4, 5, 6, 7, 8, 9}. The tree structure easily generalizes to more

than one covariate as well as categorical inputs (where the rule is a subset of available categories

of the data reaching the node). To determine which rules are available on a given node, one simply
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looks at the subset of the data which reaches the node and determines which rules derived from

the data will yield non-empty terminal nodes, or will yield terminal nodes with a minimum desired

number of observations.

4.2.2 Likelihood & Prior

As before, let yj , j = 1, . . . , n be the observed survival time where δj is 1 if yj is observed

and 0 if yj is censored. Let y = {y1, . . . , yn} and let xj ∈ Rp be the observed covariate vector for

observation j and x = {x1, . . . , xn}. Without loss of generality, we assume that y has been scaled

to the interval (0, 1]. The partition model assumes that given a tree, T , the hazard functions at

each terminal node are independent and the data within a terminal node, given the hazard function

at the node, are independent and identically distributed. It is important to note that covariates are

used to construct the tree, T , but are not used in the hazard functions. Consequently, the likelihood

function can be expressed as a simple product of likelihoods

p(y | T ) =
M∏
i=1

p(yi | ·)

where yi represents the ni responses which belong to the ith terminal node, p(yi | ·) represents the

likelihood of yi given the hazard function in the ith terminal node and M is the total number of

terminal nodes.

At each terminal node, the hazard function is assumed to be piecewise constant. That is, the ith

hazard function follows the form hi(t) = λik for t ∈ (sk−1, sk] with zk denoting the midpoint of

the interval. In all, there are K bins with endpoints (sk−1, sk] for k = 1, . . . , K where s0 = 0 and

sK = 1. For simplicity, we use the same grid for each hazard function and assume that the bins

all have equal width, inducing a regular grid for (z1, . . . , zK). The likelihood for data at a single
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terminal node can be expressed as

p(yi | λi1, . . . , λiK)

=

ni∏
j=1

λ
δij
ikij

exp

−
(yij − skij−1)λikij + I(kij > 1)

kij−1∑
g=1

(sg − sg−1)λig


= exp

{
ni∑
j=1

δij log(λikj)−

[
ni∑
j=1

(yij − skij−1)λkij +
K∑
k=1

(sk − sk−1)λikmik

]}

= exp


K∑
k=1

nik log(λik)− λik

 ∑
j:kij=k

(yij − sk−1) +mik(sk − sk−1)


where yij is the jth response from the ith terminal node, kij denotes the interval yij belongs to, mik

is the number of observations of yi which are greater than sk, and nik is the number of uncensored

observations of yi which fall in interval k, and δij is the censoring indicator for yij .

We model the hazard function hi(t) = λik = exp(fi(zk)) for t ∈ (sk−1, sk] where fi(t) is a

Gaussian process with mean 0 and covariance function Ci(t, t′) = τ 2i exp{−(t−t′)/li}. The Gaus-

sian process is evaluated at the K midpoints of the intervals (sk−1, sk] and determines the value of

λik = exp{fi(zk)}.Given a set ofK bins, fi = (fi(z1), . . . , fi(zK))T follows a multivariate-normal

distribution with mean 0 and covariance matrix Σi with the i′, j′th element of Σi being Ci(zi′ , zj′).

The posterior distribution of fi, assuming the covariance function parameters are known, is

p(fi | yi) ∝ p(yi | fi)p(fi) = (2π)−K/2|Σi|−.5 exp {g0(fi)}

where

g0(fi) =
K∑
k=1

nikfik − exp(fik)

 ∑
j:kij=k

(yij − sk−1) +mk(sk − sk−1)

− 1

2
fTi Σ−1i fi

and fik is the kth element of fi. Note that g0(fi) implicitly depends on the data, bins, and covariance

function parameters. Due to the assumption of independence between partitions, the full joint
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posterior distribution of a tree, T , with M terminal nodes and f1, . . . , fM can be expressed as

p(T, f1, . . . , fM | y) ∝ p(T )
M∏
i=1

p(yi | fi)p(fi)

where p(T ) is the prior on the tree as in (4.1).

The goal in many partition models is to find a suitable partition structure. In a Bayesian frame-

work, this corresponds to searching the posterior of the tessellation, i.e.,

p(T | y) =

∫
. . .

∫
p(T, f1, . . . , fM | y)df1 . . . dfM

∝ p(T )
M∏
i=1

∫
p(yi | fi)p(fi)dfi. (4.2)

To do this, often a model is chosen in which all node-specific parameters can be integrated out

analytically. When the integrals have an analytic form, often an efficient reversible jump MCMC

chain (Green, 1995) can be constructed to search the posterior partition space. Unfortunately

there is no analytical solution for the integrals in (4.2) for the present model. To overcome this

issue, a Laplace approximation is used to approximate each integral. Laplace approximations have

been used previously in various survival model settings. Levine et al. (2014) utilize a Laplace

approximation to search trees in a Bayesian frailty model and Martino et al. (2011) use integrated

nested Laplace approximations via data augmentation to fit a Cox proportional hazards model to

avoid MCMC. In our method, the Laplace approximation is similar to Levine et al. (2014), but we

do not have random effects and we also optimize the covariance function hyperparameters via an

empirical Bayes approach.

In usual form, the Laplace approximation approximates the integral with a normal distribution

derived from a Taylor expansion of log[p(yi | fi)p(fi)]. The Laplace approximation has a closed

form given by ∫
p(yi | fi)p(fi)dfi ≈ |Di + Σ−1i |

1
2 |Σi|−

1
2 exp

{
g0(f̂i)

}
(4.3)

whereDi is a diagonal matrix with j′th element exp(fij′)
[∑

j:kij=j′
(yij − sj′−1) + (sj′ − sj′−1)mj′

]
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and f̂i = arg maxfi p(yi | fi)p(fi), which can be obtained using Newton’s method.

Thus far we have assumed that the covariance function parameters are fixed and known. In

practice, we employ an empirical Bayes approach to set these values in each terminal node. Specif-

ically, we choose τi and li to maximize p(yi | fi)p(fi)η(li)η(τi/10) where η(·) is the density of a

t-distribution with one degree of freedom.

At this point, we have a way to approximate p(T | y) by utilizing Laplace approximations.

We now need to determine a way to search the approximate posterior. As is common in many tree

models such as Chipman et al. (1998) and Gramacy and Lee (2008), we employ Markov chain

Monte Carlo methods to search the posterior. Due to the varying number of parameters in the prior

of the tree structure, a reversible jump MCMC algorithm (Green, 1995) needs to be constructed,

and is discussed in the next section.

4.3 Markov Chain Monte Carlo

Since the dimension of the tree parameter space is variable, we use a reversible jump MCMC

algorithm to search the posterior parameter space (Green, 1995). The algorithm is based on both

Chipman et al. (1998) and Gramacy and Lee (2008) with a few modifications. The primary goal

in constructing the algorithm is to obtain draws from p̃(T | y), the approximate posterior obtained

using the Laplace approximations. This is accomplished in the reversible jump MCMC algorithm

by modifying an existing tree with one of four possible moves: grow, prune, change, and swap.

These four steps are now described.

• Grow: The grow step consists of randomly selecting a terminal node and splitting it using

a split rule. The split rule is selected by first randomly selecting a variable and then ran-

domly selecting an available rule of that variable (i.e. the rule is drawn from the prior). This

increases the number of terminal nodes of the tree by one, thereby “growing" the tree.

• Prune: The prune step is the opposite of the grow step. Randomly select a node whose

children are both terminal nodes and delete the split rule and the children nodes. This reduces

the number of terminal nodes of the tree by one, thereby “pruning" the tree.
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Algorithm 2. Reversible Jump Markov Chain Monte Carlo Algorithm
Initialize Tree;
for i← 1 to N do

Propose a grow, prune, change, or swap step to the current tree;
if grow step then

Split a random terminal node by randomly choosing a split rule;
else if prune step then

Combine two terminal nodes by randomly selecting an interior node whose children
are both terminal nodes and removing the rule and child nodes;

else if change step then
Randomly change a rule from an existing interior node;

else if swap step then
Randomly choose a parent-child pair and swap their rules;

end
Accept the proposed change with probability α;

end
Discard burn-in period;

Figure 4.1: Reversible jump Markov chain Monte Carlo algorithm for the survival tree model. The
MCMC employs grow, prune, change, and swap steps.

• Change: The change step randomly selects an interior node and changes the existing split

rule. If the current rule is based on a categorical variable, a new rule is drawn randomly from

the prior by first randomly selecting a variable, and then randomly selecting a rule from that

variable. If the current rule is based on a numeric variable, there are two possible changes

that can be made: 1) Move the current rule to the next largest or smallest rule available for

the current variable, 2) Draw a new rule from the prior. The first change is made with a

certain probability chosen by the user (i.e. this is a tuning parameter), otherwise a new rule

is drawn from the prior.

• Swap: The swap step involves randomly choosing a parent and child pair which are both

internal nodes, and then swapping their rules. If, however, the parent and child’s rules are

based on the same continuous variable, a rotate step is employed (see Gramacy and Lee

(2008)). If both children of the parent node have the same rule, both children swap their

rules with the parent node.
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Algorithm 2 displayed in Figure 4.1 provides pseudo-code for the MCMC algorithm. More

specifically, the MCMC algorithm proceeds as follows:

1. Initialize a starting tree, T .

2. Propose a new tree, T ?, from the current tree using a grow, prune, change, or swap step (as

appropriate based on current tree).

3. Accept T ? with probability

α = min

{
1,
q(T | T ?)p̃(T ? | y)

q(T ? | T )p̃(T | y)

}
(4.4)

where q(· | ·) is the proposal distribution and p̃(T | y) is the approximate posterior of T

obtained from the Laplace approximation; otherwise keep the current tree, T .

4. Repeat steps 2-3 until the stationary distribution is reached and the desired number of sam-

ples is obtained.

In practice we replace the approximate posterior of the tessellation in (4.4) with the likelihood-

prior product in (4.3) since the normalizing constants cancel. It is important to note that the form

of q(·, ·) is different with each of the four possible tree modifications. These details are discussed

next.

4.3.1 Markov Chain Monte Carlo Details

We now proceed by describing the acceptance ratio of the MCMC algorithm in more detail. As

shown in (4.4), the acceptance proposal for a proposed tree is

α = min

{
1,
q(T | T ?)p̃(y | T ?)p(T ?)
q(T ? | T )p̃(y | T )p(T )

}

where q(· | ·) is the proposal distribution from which T ? was generated and p̃(y | T ) is the

approximate marginal likelihood. The prior evaluation, P (T ), is given in (4.1). We now provide
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additional details regarding the evaluation of q(· | ·), which differ depending on which type of tree

modification is proposed (i.e. grow, prune, change, swap).

4.3.1.1 Grow

The proposal probability for a grow step, qg(T ? | T ), is pg(ngmim
?
ij)
−1 where pg is the prob-

ability of proposing a grow step, ng is the number of nodes on the current tree T that are capable

of a grow step, mi is the number of variables that have valid split rules on the ith node which was

selected for a grow step, and m?
ij is the number of split rules available on the jth variable on the

ith node selected as the split variable.

4.3.1.2 Prune

The proposal probability for a prune step, qp(T ? | T ), is pp(nd)−1 where pp is the probability of

proposing a prune step and nd are the number of interior nodes for which a prune step is possible

(i.e. parent nodes which have both children as terminal nodes).

4.3.1.3 Change

The proposal probability of a change step, qc(T ? | T ) is pcn−1c pprior(mim
?
ij)
−1 where pc is the

probability of proposing a change step, nc is the number of interior nodes eligible for a change

step (which is all interior nodes if one includes the trivial change step of keeping the same rule if

there is only one rule available to a particular node), and pprior is the probability of drawing a rule

from the prior. Note that if the current rule is based on a categorical variable, pprior = 1 and mi,

m?
ij are the same as those found in qg(·, ·). If however, the current rule is a continuous variable,

pprior ∈ [0, 1] is the value pre-specified by the user. If the new rule is proposed by the prior, mi,

m?
ij are the same as those found in qg(·, ·). If, however, the new rule is chosen by selecting the next

largest or smallest rule at random from the current continuous variable on which the current rule is

based, then mi = 1 and m?
ij = 2 unless the current rule is on the boundary of available rules or is

the only rule available, then m?
ij = 1.
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4.3.1.4 Swap

The proposal probability of a swap step, qs(T ? | T ) is psn−1s where ps is the probability of

proposing a swap step and ns is the number of possible swap steps available on the current tree, T .

Prior to running the reversible jump MCMC algorithm, the user specifies pg, pp, pc and ps.

However, on a given MCMC iteration, these values may need to be adjusted. For instance, if

one starts with the root node, the only possible proposal is a grow step, therefore pg = 1 and

pp = pc = ps = 0. Other examples (not necessarily an exhaustive list) include the fact that a

swap step is not possible with fewer than 3 terminal nodes, and birth steps may not be possible if

the tree grows large enough that splitting any terminal node would result in a terminal node with

fewer than the minimum number of required observations required by the user. Therefore, on each

iteration of the MCMC chain, one must check to determine which proposals are actually available

and adjust the probabilities accordingly. This is also the case when calculating the probability of

returning to the current tree from the proposed tree, q(T | T ?).

4.3.2 Parallel Tempering

From their inception, Bayesian tree models have been notorious for their difficulty in mixing

when using MCMC procedures. Various methods have been proposed to overcome this issue

including restarting the MCMC chain multiple times (Chipman et al., 1998), parallel tempering

(Gramacy and Taddy, 2010), and multiset sampling (Leman et al., 2009).

We implement parallel tempering (Geyer, 1991) modeled after Gramacy and Taddy (2010)

to search the multi-modal posterior distribution and effectively search the parameter space. The

parallel tempering algorithm was described in Section 3.2.4, and the same approach is used here.

4.3.3 Computational Considerations

Although the Laplace approximation reduces the dimension of the parameter space which

needs to be explored via MCMC methods, there are still a number of computational challenges.

The main computational cost in the algorithm comes from optimizing the covariance function pa-

rameters, li and τi, in each terminal node. Optimizing these parameters requires finding f̂i for each
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evaluated pair which involves solving multiple linear systems (Newton’s method) and a determi-

nant.

Fortunately, the choice of the covariance function for fi(·) along with a regular grid imply that

we have a sparse closed-form solution for

Σ−1i =
1

τ 2i (1− ρ2i )



1 −ρi

−ρi 1 + ρ2i −ρi
. . . . . . . . .

−ρi 1 + ρ2i −ρi

−ρi 1


where ρi = exp(−∆z/li) where ∆z is the distance between points of the regular grid. This closed

form implies that we never need to form the dense matrix Σi, and the matrices in (4.3) can be

stored in a sparse matrix form, reducing memory and computation demands.

Lastly, although we use the same bins for each hazard function, we use a subset of the bins in

each terminal node since the ranges of observed survival times will differ across partition elements.

This reduces the computation burden as well as avoids extrapolating beyond the terminal node’s

data. This is important since the partition model does not borrow information from other partition

elements. For each terminal node, we use the first k?i bins where k?i = {k′ : sk′−1 < max(yi) ≤

sk′}.

4.4 Simulations & Applications

4.4.1 Preliminaries

For the following analyses, we use the same set of tuning parameters for the MCMC chain.

We set the probability of grow, prune, change, and swap steps to be .25. For the change step

for a continuous variable, we choose to move the rule to an adjacent rule with probability .75,

otherwise a rule is drawn from the prior. We run each analysis with 8 parallel chains with the

minimum inverse-temperature of .1, and propose a trade between the parallel chains every 10
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MCMC iterations. Last, we require trees to have a minimum of 25 observations at a terminal node,

and set the number of bins for the hazard function to be K = 100.

4.4.2 Non-Proportional Hazards

Our first simulation demonstrates the flexibility and resulting interpretability of the method.

One thousand data points were simulated from the following model:

X1 ∼ Uniform(0, 10)

X2 ∼ Multinomial(A,B,C,D; .25, .25, .25, .25)

Y ∼



Weibull(5, 2) if X1 > 5 and X2 ∈ {A,B}

Weibull(1, 5) if X1 ≤ 5 and X2 ∈ {A}

Weibull(.5, .9) if X1 ≤ 5 and X2 ∈ {B}

Weibull(5, 5) if X1 ≤ 3 and X2 ∈ {C,D}

Weibull(.5, .5) if 3 < X1 ≤ 7 and X2 ∈ {C,D}

G if X1 > 7 and X2 ∈ {C,D}

(4.5)

whereG is a random variable drawn from a piecewise linear survival function, shown in the bottom

right panel in Figure 4.2. The data were also right censored with approximately a 5% censoring

rate. The Markov chain Monte Carlo algorithm ran for 105 iterations. The tree with the highest

posterior probability from the chain is shown in Figure 4.3, and shows that the desired tree structure

was recovered. Note that since we are using observed data values to choose the rules at each node,

the rules for numeric variables will not be exactly the same as those used to generate the tree.

Figure 4.2 shows the posterior survival curves plotted with the true survival functions at each

terminal node.

This example highlights the strength of this particular method, simultaneously producing easy

interpretation and flexibility. Interpretation is simple since only one tree is needed, but the the

various shapes of the survival curves can still be modeled flexibly at each terminal node.
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Figure 4.2: The posterior mean (dotted), 95% credible intervals (dashed), and the true survival
curve (solid, blue) in each partition element. The titles indicate the true survival distribution with
W denoting a Weibull distribution and G the piecewise linear survival curve in Simulation 1. The
model is successful at modeling the varying shapes in this non-proportional hazards context.

x2  {A, B}

x1 4.9932

x2  {A}

x1 6.9773

x1 2.9574

Figure 4.3: The tree with the highest posterior probability from the non-proportional hazards sim-
ulation. If data meet the criterion at a node, they descend to the left child node; otherwise, they
descend to the right child node. The model successfully captures the partition structure.
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4.4.3 Piecewise-Constant Proportional Hazards

Another simulation using a similar partition structure as (4.5) was performed with various

exponential distributions. This is equivalent to a proportional hazards model where the hazard

function is piecewise constant (rather than linear) in the covariate space. One thousand data points

were generated from the following model with a censoring rate of 7.8%.

X1 ∼ Uniform(0, 10)

X2 ∼ Multinomial(A,B,C,D; .25, .25, .25, .25)

Y ∼



Exp(1) if X1 > 5 and X2 ∈ {A,B}

Exp(10) if X1 ≤ 5 and X2 ∈ {A,B}

Exp(.5) if X1 ≤ 3 and X2 ∈ {C,D}

Exp(3) if 3 < X1 ≤ 7 and X2 ∈ {C,D}

Exp(10) if X1 > 7 and X2 ∈ {C,D}

(4.6)

where Exp(µ) is an exponential distribution with mean µ. After 105 iterations of the MCMC

chain, the tree with the highest posterior probability obtained the correct partition and the resulting

survival curves fell within the 95% credible regions. For brevity, the tree and survival functions

are not pictured.

Another proportional hazards model was constructed by simulating data from two hazard func-

tions proportional to the hazard function of G in (4.5) with a 5.3% censoring rate. Only one

covariate was used, X1 ∼ Uniform(0, 1), and the covariate space was partitioned based on X1

being either greater than or less than .5. The MCMC chain was run for 105 iterations, and the tree

with the highest posterior probability was obtained. The tree misclassified only two points out of

1,000 simulated values. Figure 4.4 compares the posterior and true survival functions. The model

successfully captures these two non-standard survival curves.
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Figure 4.4: The posterior mean (dotted), 95% credible intervals (dashed), and the true survival
curve (solid, blue) in each partition element. The model is successful at modeling the proportional-
hazard non-parametric survival functions.

4.4.4 Linear Proportional Hazards

Although the present partition model assumes that survival functions are piecewise-constant in

the covariate space, it still does a good job when this assumption does not hold, e.g., when dealing

with the classic linear proportional hazards model (Cox, 1972). One thousand observations were

simulated from an exponential proportional hazards model with approximately a 5% censoring

rate. The model is
h(t | Xj = xj) =

1

2
exp {xjβ}

Xj = (X1, . . . , X6)

X1, . . . , X5 ∼ Uniform(0,1)

X6 ∼ Bernoulli(.5)

β = (−1, 1, 2, 0, 0,−2)T .

(4.7)

where h(· | ·) represents the hazard function.

Note that we have two spurious covariates (X4, X5) which do not influence the hazard function.

The MCMC algorithm ran for 105 iterations and the tree with the highest posterior probability is
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X6 0

X3 0.56758

X2 0.47398

X3 0.3956

X1 0.4708

X3 0.833

Figure 4.5: The tree with highest posterior probability from the linear proportional-hazards model.

shown in Figure 4.5. Note that neither of the two spurious covariates were included in the tree. To

give a rough measure of performance, Figure 4.6 plots the posterior survival curve and the survival

curve using the median hazard value of the data that reach the terminal node. Also plotted are

the corresponding Kaplan-Meier curves, which indicate that the model does an excellent job at

non-parametrically modeling the marginal survival functions in each partition element.

4.4.5 Sample Size and Censoring Rate Analysis

In all the above simulated examples, 9 different simulations were completed using a combi-

nation of 3 different sample sizes (n = 1000, 500, 100) and 3 different censoring rates (roughly

5%, 10%, and 40 − 70% censoring). The results of the simulations presented previously corre-

spond to the largest sample size of 1,000 with the lowest censoring rate.

Two methods for choosing trees include finding the tree with the highest posterior value, equiv-

alent to finding the tree with the largest p(y | T )p(T ), or the tree with the highest marginal like-

lihood value, p(y | T ). As noted by Chipman et al. (1998), the present prior on the tree will

generally favor categorical splits unfairly. One balanced approach is to plot the best marginal like-

lihood for each tree size and then determine at what point increasing the tree size no longer yields

a notable increase in the likelihood. For simplicity in the simulations in this paper, we have chosen

trees with the highest posterior likelihood, but we highly recommend looking at the best trees in
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Figure 4.6: The posterior mean (dotted) and 95% credible intervals (dashed) as well as the Kaplan-
Meier survival curve (red, dotted) and 95% confidence intervals (red,dashed). The survival curve
corresponding to the median hazard function of the data in each terminal node is also plotted (solid,
blue) to give a rough measure as to where the hazard functions in the covariate region lie.
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several tree sizes.

Table 4.1 shows the number of terminal nodes found for the simulated models presented in

sections 4.4.2-4.4.4 for various sample sizes and censoring rates. The table shows tree sizes based

on the largest posterior values. In general, the method performs well with large sample sizes

(n = 1000), even in the presence of moderate censoring. By “performing well”, we mean that the

model identifies appropriate partitions and models the data well in each partition element. With a

moderate sample size (n = 500), the model continues to perform well when the survival functions

follow Weibull or exponential distributions, but has more trouble identifying the partition when the

data are drawn from an unusual survival function, as in Figure 4.4. This is likely due to the fact that

the prior is centered around an exponential survival function, and the priors give slight preference

to survival curves with smaller τ 2 and l values in the covariance function. For smaller sample sizes

(n = 100), fewer partitions are obtained due in part to the fact that we required terminal nodes to

have at least 25 data points so that survival curves can be modeled adequately.

It should be noted that when there is a high degree of censoring (i.e. > 50%) that occasionally

the estimated survival curve at a terminal node can become overly precise. This is due to the fact

that the marginal likelihood is maximized when τ 2 is very small, forcing a very precise exponential

survival curve. A careful researcher, however, will notice these issues, and choose a different

posterior partition where this is not an issue. One way to diagnose this particular issue is to compare

the posterior survival curves to the Kaplan-Meier curves (Kaplan and Meier, 1958) to determine if

there are any major discrepancies.

4.4.6 Lung Cancer Survival

The partition model was applied to a lung cancer dataset which contains protein expression

levels for 9 proteins which are believed to be associated with mortality. The dataset records the

survival times, of which we have a high censoring rate of 72%. The partition model was run

for 105 iterations. In this case, the log-posterior indicated that no partitioning should be done.

However, our experience with the model leads us to believe that this is due to the high rate of

censoring which decreases the likelihood contribution. The marginal likelihood, p(y | T ), had
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Model n Censoring Terminal Nodes Terminal
(log-posterior) Nodes

1000 5.5% 6 6
1000 11.2% 7 6
1000 37.5% 6 6

Piecewise-Constant, 500 7.4% 6 6
Non-PH 500 8.6% 6 6

(Section 4.4.2) 500 39.4% 7 6
100 5.0% 3 6
100 8.0% 3 6
100 28.0% 4 6

1000 7.8% 5 5
1000 16.2% 5 5
1000 70.1% 5 5

Piecewise-Constant, 500 7.8% 5 5
PH, Exponential 500 14.4% 5 5
(Section 4.4.3) 500 68.0% 6 5

100 5.0% 3 5
100 19.0% 3 5
100 68.0% 3 5

1000 5.3% 2 2
1000 13.8% 2 2
1000 45.0% 2 2

Piecewise-Constant, 500 7.4% 1 2
PH, G-dist 500 11.4% 2 2

(Section 4.4.3) 500 46.0% 1 2
100 9.0% 1 2
100 16.0% 1 2
100 47.0% 1 2

1000 6.6% 7 N/A
1000 13.7% 7 N/A
1000 42.1% 6 N/A

Linear PH 500 6.6% 6 N/A
(Section 4.4.4) 500 11.6% 5 N/A

500 48.4% 5 N/A
100 4.0% 2 N/A
100 10.0% 3 N/A
100 45.0% 3 N/A

Table 4.1: The number of terminal nodes found for the simulated models (third column) for various
sample sizes n and censoring rates. The true number of terminal nodes is shown in the last column,
where applicable.
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consistent improvements until the tree reached 10 terminal nodes. However, in these larger trees,

the optimized hyperparameters occasionally favored the prior too strongly by selecting very small

values for τ 2. Therefore, a the tree with the highest marginal likelihood with 5 terminal nodes

was selected since the optimization of the hyperparameters (τ, l) in each partition element was not

suspect.

Figure 4.7 shows the selected tree, 95% credible intervals and posterior mean for the survival

function at each terminal node as well as the Kaplan-Meier survival curves (Kaplan and Meier,

1958) for comparison. The tree suggests several different survival curves of various shapes in-

cluding groups with relatively short survival times, and groups which tend to survive longer. For

instance, the tree suggests that for subjects with low expression levels ofX6 andX1 have relatively

short survival times and higher levels of X6 and X7 generally lead to longer survival times, etc.

The closeness of the model results with that of the Kaplan-Meier curves indicate that the model is

sufficiently flexible to model the survival curves nonparameterically while simultaneously provid-

ing an interpretable partition of the covariate space. This closeness also indicates that there aren’t

any major concerns in regard to the optimization procedure.

4.4.7 Markov Chain Monte Carlo Mixing

Generally we find that mixing of the MCMC chain is satisfactory. In the partition models,

typically there is a lower acceptance rate on the untempered chain since the model has sharp edges

which make it difficult to make many modifications to the tree. In the models which vary smoothly

through the covariate space, mixing is generally better, averaging about 20-40% acceptance rate

overall across all moves. The parallel tempering generally swaps chains more frequently for the

higher inverse-temperatures, and allows for better mixing of the overall chain.

4.5 Discussion & Conclusion

The main advantages of the partition model are its ease in interpretation coupled with its flex-

ibility. Inference is easily obtained from inspecting trees and the resulting survival curves at the

terminal nodes. In both simulations and applications, the model does well in obtaining the correct
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partition structure (when data are generated from a partition model) and still provides adequate

modeling and interpretation in models where the survival function changes smoothly throughout

the covariate space. Indeed, the model is flexible enough to be very close to the nonparametric

Kaplan-Meier curves in the lung cancer data analyzed in this paper.

The main drawback of the present method is the computation time. For instance, the lung can-

cer data took approximately 12 hours to obtain 105 iterations. Even so, the tuning of the chain is

extremely easy since node-specific parameters are marginalized through the Laplace approxima-

tion, and the only tuning parameters are related to modifying the tree and the parallel tempering.

In our experience, the results are robust to these tuning parameters, therefore the method is almost

fully automatic. To reduce computation time, one can reduce the number of bins, K, but this will

lead to a coarser estimation of the hazard function.

The only other issue we’ve experienced is that of occasional issues when optimizing the covari-

ance function parameters τ and l where τ is selected to be extremely small which does not allow

the model to flexibly fit the survival function. This has usually happened only when there is a large

amount of censored data, and the observed deaths happen early. Fortunately, as far as we can tell,

these poor optimizations are quite obvious to detect since they result in extremely narrow credible

intervals around an exponential survival function. Detecting potential optimization issues can be

easily done by fitting Kaplan-Meier curves for comparison and looking for large differences in the

estimated survival curves.

Overall, this method shows great potential for easy interpretation as well as flexible modeling.

Extending this method to perform variable selection in high dimensions as well as potential tweaks

to the prior to help the model perform better in high-censoring situations are areas for further

research.
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5. SUMMARY

In this dissertation, we have explored the construction of efficient Markov chains through mod-

ifying existing algorithms, such as the Metropolis-Hasting sampler, and searching approximate

posteriors of partition models efficiently by marginalizing parameters using Laplace approxima-

tions. The methodologies are important to the field of Bayesian statistics since performing full

Markov chain Monte Carlo methods on these increasingly complex models is often proving to be

inadequate.

As the field of Bayesian statistics continues to move forward, researchers will need to allow

computation considerations to play a larger role in the development of methodology. Such com-

putational considerations formed the basis for many decisions in the present work, and without

making decisions based largely on these computational considerations, the computational demand

would have likely yielded intractable algorithms.

A common theme in this dissertation has been the balance between prediction and inference.

There are many machine learning algorithms which can make predictions with a high degree of

accuracy. However, these methods often lack interpretability. Conversely, there are many statistical

methods which are simple to interpret, but are not flexible enough to model the data accurately

enough. An overarching goal in this dissertation was to find a compromise between these two

extremes, and we believe we have been successful.

No doubt there will be giant leaps forward in the world of computation and algorithm de-

velopment which will allow the creation and application of statistical methods not yet imagined.

Between these giant leaps, however, history has consistently shown that progress is made incre-

mentally. This dissertation is one of many of these incremental steps which are necessary to move

the field of statistics forward and we are excited to contribute and watch this ubiquitous field de-

velop further in the coming years.
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