Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period, even for Texas A&M users with NetID.

    Relationships between Beef Postharvest Biochemical Factors and Warner-Bratzler Shear Force

    Thumbnail
    View/ Open
    OROZCOHERNANDEZ-THESIS-2013.pdf (2.403Mb)
    Date
    2013-04-01
    Author
    Orozco Hernandez, Pilar
    Metadata
    Show full item record
    Abstract
    Biochemical changes in muscle postmortem have been associated with initial beef tenderness early postmortem, and with improvements in tenderness during postmortem storage, defined as meat aging. Differences in the initial contractile state of the sarcomere, the ionic environment of the sarcoplasm including pH, the activity of neutral proteolytic enzymes, and collagen content and solubility have been associated with beef tenderness. In Phase I, steaks from four genetic lines of steers and heifers were used to understand the biochemical differences between tough and tender steaks. The most tender (< 30 N Warner Bratzler shear force (WBS)) and toughest Longissimus steaks (< 30 N WBS) from Angus, Braford, Brangus, and Simbrah heifers and steers were used. For Phase II, samples were obtained from a subset of Santa Cruz yearling heifers selected based of genotypes for tenderness (tough and tender) using a commercial genetic marker. Within genotype for tenderness, each animal was randomly assigned to one of four growth enhancement treatments. The most tender (< 30 N WBS) and toughest Longissimus steaks (< 30 N WBS) were selected for use in this study. In Phase I, tough steaks after 3, 10, and 17d postmortem had higher (P < 0.0005) WBS values than tender steaks. Tender steaks came from carcass with slightly higher (P = 0.008) marbling score and (P = 0.01) Quality grade. Sarcomere length, total and soluble collagen, potassium concentration, and m and µcalpain did not differ (P > 0.05) between tough and tender steaks. Sodium concentration at 10 d was higher (P = 0.03) in tough steaks, but only account for 0.05% of the variation in WBS at 3d. Tender steaks had less (P = 0.04) intact desmin at 24h, but intact desmin was not correlated (P > 0.05) with WBS. In Phase II, tough steaks after 3, 10, and 17d postmortem had higher (P < 0.0001) WBS values than tender steaks. Tender steaks came from carcass with slightly higher (P < 0.03) marbling score and (P = 0.02) Quality grade. Tender teaks were slightly lighter (P = 0.02), with more red (P = 0.02) and yellow (P = 0.007) color, and had slightly lower (P = 0.02) pH, compared with tough steaks. Sarcomere length, total and soluble collagen, sodium and potassium concentration, and m and µcalpain did not differ (P > 0.05) between tough and tender steaks. Tender steaks had less (P < 0.0001) intact desmin at 17d postmortem than tough steaks. Intact desmin at 17d was responsible for 4%, 47%, and 30% of WBS variation after 3, 10, and 17d postmortem, respectively. The slight difference in marbling and quality grade did not account for a significant amount of variation in WBS. However, meat color and pH accounted for variation in shear WBS. Calcium flux may have influenced meat tenderness by activation of calpains and may have altered protein to protein interactions. Results suggested that marbling, µ calpain activity, and desmin degradation, and to a lesser extent pH and meat color contributed to meat tenderness.
    URI
    https://hdl.handle.net/1969.1/149933
    Subject
    calcium
    tenderness
    Warner-Bratzler shear force
    calpain
    collagen
    marbling
    sarcomere length
    desmin
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Orozco Hernandez, Pilar (2013). Relationships between Beef Postharvest Biochemical Factors and Warner-Bratzler Shear Force. Master's thesis, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /149933.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV