Show simple item record

dc.contributor.advisorArroyave, Raymundo
dc.creatorWilliams, Michael Eric
dc.date.accessioned2010-01-15T00:12:44Z
dc.date.accessioned2010-01-16T00:56:18Z
dc.date.available2010-01-15T00:12:44Z
dc.date.available2010-01-16T00:56:18Z
dc.date.created2008-05
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2779
dc.description.abstractIn thiswork we present the development of a method for the prediciton of finite temperature elastic and thermodynamic properties of cubic, non-magnetic unary and binary metals from first principles calculations. Vibrational, electronic and anharmonic contributions to the free energy are accounted for while magnetic effects are neglected. The method involves the construction of a free energy surface in volume/temperature space through the use of quasi-harmonic lattice dynamics. Additional strain energy calculations are performed and fit to the derived thermal expansion to present the temperature dependence of single crystal elastic constants. The methods are developed within the framework of density functional theory, lattice dynamics, and finite elasticity. The model is first developed for FCC aluminum and BCC tungsten which demonstrate the validity of the model as well as some of the limitations arising from the approximations made such as the effects of intrinsic anharmonicity. The same procedure is then applied to the B2 systems NiAl, RuAl and IrAl which are considred for high temperature applications. Overall there is excellent correlation between the calculated properties and experimentally tabulated values. Dynamic methods for the prediction of temperature dependent properties are also introduced and a groundwork is laid for future development of a robust method.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectFirst principlesen
dc.subjectab-initioen
dc.subjectelectronic structure calculationen
dc.subjectmaterials simulationen
dc.subjecthigh temperature alloysen
dc.titleAb-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperaturesen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberCagin, Tahir
dc.contributor.committeeMemberJin, Yongmei
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record