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ABSTRACT

Ab Initio Elastic and Thermodynamic Properties

of High-Temperature Cubic Intermetallics

at Finite Temperatures. (May 2008)

Michael Eric Williams, B.S., Brigham Young University

Chair of Advisory Committee: Dr. Raymundo Arróyave

In this work we present the development of a method for the prediciton of finite temper-

ature elastic and thermodynamic properties of cubic, non-magnetic unary and binary metals

from first principles calculations. Vibrational, electronic and anharmonic contributions to

the free energy are accounted for while magnetic effects are neglected. The method involves

the construction of a free energy surface in volume/temperature space through the use of

quasi-harmonic lattice dynamics. Additional strain energy calculations are performed and

fit to the derived thermal expansion to present the temperature dependence of single crystal

elastic constants. The methods are developed within the framework of density functional

theory, lattice dynamics, and finite elasticity. The model is first developed for FCC alu-

minum and BCC tungsten which demonstrate the validity of the model as well as some of

the limitations arising from the approximations made such as the effects of intrinsic anhar-

monicity. The same procedure is then applied to the B2 systems NiAl, RuAl and IrAl which

are considred for high temperature applications. Overall there is excellent correlation be-

tween the calculated properties and experimentally tabulated values. Dynamic methods for

the prediction of temperature dependent properties are also introduced and a groundwork

is laid for future development of a robust method.
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CHAPTER I

INTRODUCTION

One of the great keys in the advancement of technology is the development of materials

that have the optimal combination of properties for the desired application. For example,

without heat resistant ceramics the space shuttle would burn up during atmospheric re-entry

and without the unique properties of semi-conductors toady’s electronics wouldn’t exist as

we know them. Materials therefore can become either enablers or bottlenecks for scientific

and technological advancement. It is the primary work of materials science and engineers to

understand the properties of matter and the processes that will combine those properties into

synergistic materials with the overall material properties for a given application [1]. In order

to understand the phenomena that govern material behavior scientists typically develop and

perform countless experiments to determine the properties of interest such as mechanical

strength, stiffness, resistance to heat, conductivity of electricity and many others. With

recent advances in computer hardware and software the role of computer simulations in

materials science is expanding and delivering many useful insights [2]. In particular, these

’virtual experiments’ can provide understanding not only of what happens to a material but

why it happens [3] based on understanding of microscopic phenomena.

One area in which material properties limit the effectiveness of a system is in the field

of gas turbines. Gas turbines are a primary source of power generation throughout the

world and there is high demand for the development of ultra-high temperature materials so

that the turbines can run more efficiently. The higher the temperature at which a turbine

can operate, the greater the thermodynamic efficiency of the system will be. This higher

efficiency can thus reduce the emmission of greenhouse gases and make the overall process

The journal model is IEEE Transactions on Automatic Control.
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more economical. Currently the state of the art in high temperature materials in turbines are

the Nickel-based supperalloys [4]. These alloys are desireable due to their high operating

temperatures and other mechanical properties such as high ductility at low temperatures [5].

Recent studies have suggested that alloys including several platinum group metals (PGM)

could yield operating temperatures higher than the current Ni-based alloys [5, 6, 7, 8]. For

example, the melting point of RuAl is over 2300 K while maintaining good ductility and

high resistance to oxidation and corrosion [8]. Similar properties have also been reported

for IrAl [6]. Since these alloys are just recently being explored for applications such as

structural members in turbines their properties and underlying micro-structural and atomistic

mechanisms have not yet been fully characterized. The goal of this work is to develop

and validate a first-principles method for the prediction of the single crystal elastic and

thermodynamic properties of PGM cubic intermetallics at finite temperatures.

After a review of background information and related literature this text contains three

body chapters, two of which represent original journal articles which have been or will be

submitted shortly for peer review and publication. The first paper explores the develop-

ment of a method for first principles prediction of finite temperature elastic constants and

thermodynamic properties including considerations for intrinsic anharmonicity and tests

the method for pure aluminum and tungsten. Excellent agreement is found between exper-

imental and calculated values for aluminum and fair results for tungsten up to about 60%

of the melting temperature. Effects of anharmonicity are assumed to be one of the largest

sources of error for calculated properties of tungsten. The second paper included extends

the established method for finite temperature predictions to the cubic intermetallics NiAl,

RuAl and IrAl. The calculated property calculations compare favorably with experiment

where available. Currently there is very little experimental information available for single

crystal properties of RuAl and IrAl. The elastic property predictions for RuAl and IrAl

are set forth as theoretical predictions awaiting experimental comparison. The third body
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chapter details efforts to calculate elastic constants dynhamically from ab initio molecular

dynamics and statistical fluctuation formulae. While this work hasn’t yet reached publica-

tion status it is projected that this and related work will yield at least one or two additional

publications. These main chapters are followed by a documentation of the computer code

developed through the course of this project and finally a summary of the entire work is

presented along with ideas for future work in these areas.
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CHAPTER II

LITERATURE REVIEW

This chapter provides the reader with background information and a review of some of the

key literature in the field of materials simulation for the prediction of elastic and thermo-

dynamic properties. This chapter is not meant to be exhaustive on the topic but rather to

provide the reader a basic framework within which the basic physical and computational

principles of this work rest. We begin with a discussion of the calculation of thermody-

namic properties from free energies and the idea of the thermal free energy surface. The

calculation of this surface is the main task in the prediction of thermodynamic properties

from first principles. The construction of this surface through density functional theory and

quasi-harmonic lattice dynamics is then discussed along with basic explanations of these

theories. The thermodynamic work is extended through the use of strain energy calculations

to predict single crystal elastic constants of cubic systems and develop their temperature

dependence. Finally a brief overview of molecular dynamics and the derivation of formulas

for the calcualtion of elastic constants from statistical ensemble fluctuations is included.

These topics represent the current state of the art of first principles and dynamic modeling

of temperature dependent material properties.

A. Thermodynamics from Thermal Free Energy

In order to obtain the thermodynamic information about a system it is best to begin with a

complete description of the free energy of the system and how it changes with temperature

and volume. This is best summarized by the free energy surface in volume/temperature space

as shown in (Fig. 1). This colletion of data is so useful since all thermodynamic quantities are

derived from the energy via the laws of thermodynamics [9]. For example, from this surface

we may find local minima along the temperature axis as T0 → Tmax. The points along this
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Fig. 1. The thermal free energy surface of aluminum created from seven quasi-harmonic
steps.

path represent the thermodynamically stable volumes (those of minimum energy) for the

structure along the potential energy curve at a given temperature and serves as a prediction

of how the material would expand with increased temperature. This volume/temperature

relationship provides a parameterization [10] which will be used according to classical

thermodynamics [9] to calculate the temperature dependence of several properties according

to established equations such as:

S = −∂F (T )

∂T
, (2.1a)

H = F (T )− T ∂F (T )

∂T
, (2.1b)

Cp = T
∂S

∂T
, (2.1c)

B = −V
(
∂2F

∂V 2

)
. (2.1d)

Which come from local slopes and curvatures of the thermal free energy surface.
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Several reserach groups have been able to calculate many useful thermodynamic and

thermo-mechanical properties for an assortment of materials. For example, Ackland et al.

have demonstrated the calculation of thermal expansion for W, NiAl, and PdTi [11] with

very good correlation to the experimental data. Arroyave et al. were also able to employ

similar methods to calculate the enthalpy of formation [12] for NiAl and Ni3Al. The phase

diagram of the boron nitride system has also been calculated by Hafner and co-workers [13].

It is clear that the development of the free energy surface is therefore of great use. This

information can be obtained either through repetitious experimentation or through quantum

mechanical calculations, the latter of which is the subject of the next two sections.

B. Quantum Mechanics and DFT

Approaches to materials simulation which are independent of experimental data and rely

solely on the basic equations of quantum mechanics and other basic laws of nature are

known as first-principles or ab initio approaches. The following section is a brief overview

of density functional theory (DFT), one of the most recognized and researched first principles

methods of materials modeling, and its role in solving quatum mechanical problems. The

author acknowledges in advance Hafner [3, 14] and Mehl et al. [15] from which this overview

was largely created.

A quantum mechanical understanding of a given material system begins with a many-

ion, many-electron Schröedinger equation and its corresponding Hamiltonian. The basic

form of the time independent Schröedinger equation is:(
−h̄2

2m
∇2 + V (~r)

)
ψ(~r, t) = eψ(~r), (2.2)
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for which for the many-body problem [16] becomes:[
N∑
i

(
−h̄2

2m
∇2
i + V (~ri)

)
+
∑
i<j

U (ri, rj)

]
ψ(~r1, ~r2 . . . , ~rN , ) = Eψ(~r1, ~r2 . . . , ~rN , ).

(2.3)

For anything more than the simplest atoms and smallest systems, any type of solu-

tion involving such a Hamiltonian would be insurmountable. The key then is to simplify

and make approximations when necessary to make calculations involving a many-body

Hamiltonian tractable and accurate.

The first step to simplify the many-body Hamitontian is known as the Born-Oppenheimer

(BO) approximation which allows for a decoupling of the electronic and ionic degress of

freedom. Since electrons move much faster than ions and have significantly less mass the

ions can be considered as stationary. The ion cores thus do not need to be treated quatum

mechanically and their contributions to the total energy can be solved using the classical

Newtonian equations of motion. A significant inclusion into the BO approximation is that of

the so called adiabatic approximation which states that the classically treated ions only move

on the potential energy surface of the electronic ground state [14]. These approximations

have proven over time to work quite well for modeling many systems, but are incapable

of explaining certain phenomena for which electron-ion interactions play significant roles

such as superconductivity [3].

With the electronic and ionic degress of freedom seperated and the ionic motion being

solved classically the next step in simplifying the quantum mechanical calculations is the

reduction of the many-electron Hamiltonian to a physically equivalent/similar system which

is easy to solve. The many electron Hamiltonian is a combination of a kintetic energy

term, an electron/ion interaction term, and electron/electron interaction term. There are two

principal ways of reducing the many-electron problem, Hartree-Fock and density functional

theory. While the Hartree-Fock method has certain strengths it was not used in the present
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study and the details of its derivation and use is not relevant to this work [17].

Density functional theory (DFT) as outlined by Hohenberg and Sham [18] states that

the total energy of a many-electron system that is exposed to an external potential can be

expressed as a unique functional of the electron density of the system and that there exists

a minimum of the functional which corresponds to the ground state density. Kohn and

Sham later developed this theory into a set of equations [19] which form the mathematical

foundation for modern day DFT. If we take n(r) to represent the electron density which is

obtained from one electron orbitals, the total electronic energy of a system can be expressed

as:

E[n(r)] = Ek[n(r)] + Ee−e[n(r)] + Ue−i[n(r)] + EXC [n(r)], (2.4)

where Ek represents the kinetic energy of the electrons, Ee−e is the electron-electron in-

teraction energy, Ue−i is the energy from the electron-ion potential, and EXC arises from

the Pauli exclusion principle and other factors. The EXC is called the exchange correlation

energy and it is the source of another approximation within DFT.

The problem with the exchange-correlation energy EXC is that there is no exact value

or solution for it currently. It is an energy representative of several phenomena, including

the need for electrons in the same quantum state to have opposite spin, any error in the

kinetic energy term and other factors [15]. Since there is no way of exactly accounting for

the exchange-correlation energy we must rely on further approximations in order to provide

a closed solution for the total electronic Hamiltonian. The simplest and earliest solution is

known as the Local Density Approximation (LDA).

The LDA assumes that the exchange-correlation energy of a given electron can be

related to the exchange-correlation energy of an electron in an electron gas of the same

density. The Hartree-Fock assumption referred to earlier can solve for exchange-correlation

of this imaginary electron gas, thus providing an approximation to the actual exchange
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correlation [3] energy within DFT. The use of quantum Monte Carlo techniques can then be

used to further correct the assumptions [20] and find more accurate exchange-correlation

energy functionals. Currently, one of the most popular parametrizations of the exhcange-

correlation energy is that of Perdew and Zunger [21] based on the theory of Ceperley and

Alder [22]. The LDA is overall satisfactory for predicting crystal structures and macroscopic

properties. Mehl et al. [15] successfully used the LDA in their calculations of ground state

elastic constants. There are some shortcoming of the approximation however, such as a

tendency to overestimate cohesive energies resulting in smaller calculated lattice parameters

than reality.

A second method for approximating the exchange-correlation energy is known as the

Generalized Gradient Approximation (GGA) which was originally presented by Perdew and

Wang [23]. The basic idea of the GGA is that the gradient of the electron density ∇n(r)

and the exchange-correlation functional EXC are related as opposed to just the density of

an electron cloud [24]. The GGA solves many of the shortcomings of the LDA such as

atomization energies in hydrocarbons, and better calculation of lattice parameters [25] in

many cases. However, there have been reports of overcorrection within the GGA leading

to problems such as overestimation of lattice parameters in certain semiconductors [26].

The last thing needed to solve the simplified DFT many-body Hamiltonian are the

appropriate wavefunctions to describe the electron-ion interactions. As a matter of principle,

in order to make calculation of the system energetics possible there should be a finite set

of basis wavefunctions; linear combinations of which would be able to yeild any necessary

wavefunctions. The choice of a basis set of wavefunctions is of vital importance since it will

limit both the potential accuracy and computational efficiency in the simulation program [3].

One of the most popular approaches for describing the wavefunctions, especially for large

solid systems is the plane-wave/pseudopotential approach, which is the method used in the

calculations of the present work.
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A pseudopotential is an approximation which essentially ignores the rapidly oscillating

nature of wavefuctions of electrons within the ionic core [27]. Fig. 2 demonstrates the basic

concept of a pseudopotential. The pseudopotential is constructed to exactly follow the true

potential of the system outside of the core radius rc, while within the rc the pseudopotential

simply ignores the many oscillations of the true wavefunction. This simplification of the

wavefunction within the core dramatically simplifies the set of basis wavefunctions needed

and therefore makes the ensuing calculations possible. The use of the pseudopotential

approach is physically a good approximation since it is the valence electrons of atoms that

have the predominant impact on how the material behaves.

Fig. 2. An illustration of the pseudopotential approximation [28].

For the purposes of the present work the DFT calculations were performed on a widely

used massively parallel electronic structure code known as the Vienna Ab-initio Simulation

Package (VASP) [29, 30, 31, 32, 33], which will be assumed as sort of a DFT "black box"
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taking certain inputs such as crystal structure and atom types and yielding energies and

positions of the system under the imposed conditions.

While DFT does allow us to solve many problems in quantum chemistry and solid state

physics it is limited to ground state properties corresponding to a tempearture of absolute

zero. The theory does not account for thermal contributions to the free energy and the

associated vibrations of atoms around their lattice sites. It assumes that the ions are fixed

within an electron gas. In order to account for finite temperature effects and the addition

of thermal energy into the system the dynamic nature of the system must be accounted for

including all the possible degrees of freedom (configurational, vibrational, electronic and

magnetic). The systems studied here are ordered crystals for which magnetism is a very

minor issue, therefore we neglect both configurational and magentic degrees of freedom

and choose to focus on vibrational and electronic contributions to the free energy.

C. Quasi-harmonic Lattice Dynamics

In order to account for the thermal/vibrational contributions to the free energy and derive

temperature dependent properties from ab initio calculations we must make use of lattice-

dynamics [34]. Based on the interaction energies between the atoms and a few statistical

arguments it is possible to approximate the behavior of atoms as they vibrate around their

given lattice sites [2]. Fig. 3 will serve as a guide throughout this section.

Fig. 3 represents the interatomic potential in an arbitrary crystalline solid. From ther-

modynamics we know that a given system naturally tends to a state of minimum energy and

therefore the atoms will settle upon a given interatomic spacing [1] as shown in the figure.

This interatomic potential is key to the understanding of material properties such as thermal

expansion, stiffness etc. The thermal expansion is due to the asymmetry of the curve and

the stiffness is related to its curvature.
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Fig. 3. Potential energy curve for a representative material.

The solution of the temperature dependent properties is really a two part process. The

first step is to obtain an understanding of how the atoms vibrate around their lattice sites, the

energetics involved and the corresponding modes of vibration within the solid. The second

step is to calculate the same vibrational properties at several points of Fig. 3 which represent

different temperatures. While this process has been explained by many researchers the

author acknowledges in particular the explanation of van de Walle which gives a coherent

and simple explanation of the following concepts. The next several paragraphs serve as a

summary of one of his papers [2].

We begin by discussing how to calculate the dynamic properties of a given interatomic

potential at the equilibrium spacing point at which point the extension to several interatomic

radii is elementary. Dynamic properties are found through lattice dynamics calculations

where the atoms are treated as point masses and the interatomic forces as springs connecting
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the masses. In essence the crystal structure is treated as a 3D matrix of masses and springs

which are free to vibrate around their lattice sites and exert forces on each other. The classical

equations of motion are then used to predict the behavior of the spring-mass system as it

oscillates about equilibrium.

1. Harmonic Approximation

For a single atom vibrating about its lattice site we begin with an anharmonic potential (as

seen in Fig. 3 of the form:

U =
1

2
kx2 + a3x

3 + a4x
4 · · · (2.5)

where k represents the classical spring constant, ai are higher order constants and x is the

distance of the atom from its equilibrium position at a given instant. Since lattice dynamics

calculations are not reasonable with a potiential of infinite terms we choose to truncate it after

the x2 term. This reduces the potential to a harmonic oscillator which is very easy to work

with throughout lattice dynamics and herein arises one source of future error: anharmonic

effects on the thermal free energy and derived properties.

If we expand the single atom harmonic potential and add the kintetic energy of the

atoms, the total Hamiltonian of the system within the harmonic approximation is given as:

H =
1

2

∑
i

Mi [u̇(i)]2 +
1

2

∑
i,j

uT (i)Φ(i, j)u(j) (2.6)

where i and j represent individual particles in the system and M, u, u̇ are the mass, position

and velocity of the given particles. The Φ(i, j) represent the force constant tensors, a set of

3 x 3 matrices that correlate a displacement of an atom j to the corresponding force exerted

on atom i:

Φαβ(i, j) =
∂2E

∂uα(i)∂uβ(j)
|u(l)=0∀l . (2.7)

Each pair of atoms in the system have a complete force constant tensor which describes
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their unique interaction. We then compile the Φ(i, j) into the so called dynamical matrix

which is single matrix which represents all the possible pairwise interatomic forces, which

are also scaled in proportion to the masses of the respective ions:

D =


Φ(1,1)√
M1M1

· · · Φ(1,N)√
M1MN

... . . . ...

Φ(N,1)√
MNM1

· · · Φ(N,N)√
MNMN

 . (2.8)

D has eigenvalues: λm which are proportional to the frequencies of the normal modes of

oscilation in the system:

νm =
1

2π

√
λm, (2.9)

which can then be translated to the phonon DOS by:

g(ν) =
1

N

3N∑
m=1

δ(ν − νm). (2.10)

The phonon DOS is then related to thermodynamics through statistical mechanics:

F = −kBT lnZ (2.11)

and when the appropriate form of the partition function Z is used we get the temperature

dependent free energy of the system:

F (T ) = E0 + kBT
∑
m

ln

[
2 sinh

(
hvm

2kBT

)]
. (2.12)

(2.12) provides the essential link between lattice dynamics and thermodynamics. Based

on the temperature dependent free energy we can then extract various quantities such as

entropy and enthalpy and explore phase transition and other phenomena.
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2. Quasi-harmonic Corrections

While much valuable information can be obtained through the harmonic approximation

and associated lattice dynamics, the model is incomplete. The harmonic approximation

does not account for thermal expansion with increasing temperature. The phenomenon of

thermal expansion is rooted in the asymmetry of the interatomic potential energy curve [1]

for a given material. Being symmetric, a harmonic potential excludes valuable information

about the solid at elevated temperatures. Of particular interest is the softening which occurs

as the atoms grow farther apart and the effect of this on mechanical properties such as

stiffness and yield strenght. In order to account for thermal expansion we make use of the

quasi-harmonic approximation [10].

The quasi-harmonic approximation is simply the extension of the harmonic approxi-

mation to several points on the potential energy curve [34] as shown in Fig. 4. These points

are represented by the same lattice as the ground state already calculated, but with slightly

scaled volumes, to simulate thermal expansion with temperature. Since they are based off

of a relaxed ground state, any internal degrees of freedom for these expanded volumes are

also relaxed. For example, a typical quasi-harmonic calculation will scale the volume up

to 4% including steps of 1,2,3 and 4 %. If we perform quasi-harmonic lattice dynamics

calculations at each of those points the potential energy curve would be constructed as show

in the figure. The free energies from lattice dynamics at each quasi-harmonic step can then

be combined to construct a free energy surface in Volume/Temperature space [35] from

which the thermodynamic properties can be extracted as shown in Fig. 1.

This free energy surface is the key to the calculation of temperature dependent proper-

ties. The local minima, slopes and curvatures of the surface provide the necessary data for

extracting many useful thermodynamic and thermo-mechanical properties.
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Fig. 4. The quasi-harmonic approximation illustrated on the potential energy curve of Fig. 3.

3. Anharmonic Contributions to the Free Energy

Both the harmonic and quasi-harmonic approximation are unable to completely model

the free energy of a system since they are approximations and admittedly exclude certain

phenomena. One of the primary excluded factors are some anharmonic contributions to

the free energy due to the truncation of (2.5) after the quadratic term [36]. While some

anharmonic effects are accounted for within the quasi-harmonic theory due to the volume

dependence of phonon modes [10], certain intrinsic anharmonic effects are neglected which

become increasingly relevant at elevated temperatures [37]. In this section we examine two

approaches for including anharmonicity corrections into first principles calculations from

quasi-harmonic lattice dynamics.
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a. Phenomenological Approach of Wallace

Wallace [36] developed a lattice dynamics approach for calculating the intrinsic anharmonic

free energy of a solid:

FA = A2T
2 + A0 + A−2T

−2 + L. (2.13)

where theA coefficients are dependent on the configuration of the lattice only. The problem

with this formula is that there is currently no way of easily calculating any of theA coefficents

except for the A2 which is estimated by a fit to empirical data to be:

A2 =
3kB
Θ

(0.0078 〈γ〉 − 0.0154) . (2.14)

Another difficulty with this method is that it breaks down at low temperatures [37]. If

we look at the specific heat at constant pressure Cp and include the anharmonic free energy

according to this method we find thatCp(T → 0) ∝ T . From quantum mechanics we know

that Cp(T → 0) ∝ T 4 and therefore we can say that this approach breaks down as T → 0.

b. Thermodynamic Perturbation Theory of Oganov

Building on the work of Wallace, Oganov and Dorogokupets [37] have developed another

formula for the inclusion of intrinsic anharmonicity. Based on thermodynamic perturbation

theory, their expression for the anharmonic free energy is:

FA =
3kBa

6

[(
1

2
θ +

θ

exp(θ/T )− 1

)2

+ 2

(
θ

T

)2
exp(θ/T )

(exp(θ/T )− 1)2
T 2

]
(2.15)

where a = 1
2
A2 from (2.14) and θ is the Debye temperature from the quasi-harmonic

calculations. This expression has the advantage that it is valid at all temperatures and can

be included into the total free energy as a simple addition term.
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4. Electronic Degrees of Freedom

The quasi-harmonic approximation and anharmonic corrections are able to account for the

vibrational degrees of freedom within the material. The incorporation of electronic degrees

of freedom as outlined by Asta et al. [38] and Arroyave et al. [12] is a fairly straitforward

addition to the total free energy of a system. Take n(ε, V ) as the electronic density of states

at a given quasi-harmonic volume, and f as the Fermi function the electronic contribution

to the free energy can be obtained by combining the following:

Fel = Eel − TSel, (2.16a)

Eel (V, T ) =

∫
n (ε, V ) fε dε−

∫ εF

n (ε, V ) ε dε, (2.16b)

Sel (V, T ) = −kB
∫
n (ε, V ) [f lnf + (1− f) ln (1− f)] dε. (2.16c)

This term may then simply be added to the total expression for the free energy as a function

of temperature [39].

D. Density Functional Theory Prediction of 0 K Elastic Constants

Extensive work on 0 K elastic constants using density functional theory has been done by

Mehl et al. This section will provide a brief overview of one of their detailed publications

on the matter [15]. The energy of an isotropic crystal under a finite strain and zero pressure

is given by:

E (ei) = E0 +
1

2
V

6∑
i=1

6∑
j=1

Cijeiej +O
[
e3
i

]
, (2.17)

with E0 representing the energy of the unstrained crystal, V the volume, ei and ej represent

a strain tensor and Cij are the elastic constants. By choosing specific strain states (ei and

ej) for the lattice and by using DFT to calculated the energy at those strain states we can

then extract the Cij .
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For an arbitrary crystal there are at most 21 independent Cij . Symmetry arguments

reduce this number to three for a cubic system; C11, C12 andC44. We must therefore choose

appropriate strain tensors that will allow us to seperate and solve for these three Cij . In

theory we would need to perform at least three sets of DFT strain calculations, one for each

Cij , to solve for the three elastic constants. Since we are working with cubic systems we use

a relationship between the bulk modulus and the two elastic constants to reduce computation

time

B =
1

3
(C11 + 2C12) . (2.18)

This is computationally advantageous since we can predict the bulk modulus from a quasi-

harmonic model by obtaining a solution to the Birch equation of state:

EBirch = E0 +
9

8
B0V0

[(
V0

V

)2/3

− 1

]2

+
9

16
B0V0

(
B
′

0 − 4
)[(V0

V

)2/3

− 1

]3

(2.19)

+
N∑
n=4

γn

[(
V0

V

)2/3

− 1

]n
.

We choose a volume conserving orthorhomic strain on the lattice:
x 0 0

0 −x 0

0 0 x2

(1−x2)


which reduces (2.17) to:

∆E(x) = V (C11 − C12)x2 +O[x4], (2.20)

which we can combine with (2.18) to solve for and seperate C11 and C12.

The calculation of C44 is obtained in a similar manner, but can be found independently
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by applying a volume conserving monoclinic strain:


0 x 0

x 0 0

0 0 x2

(4−x2)


which reduces (3.8) to:

∆E(x) =
1

2
V C44x

2 +O[x4]. (2.21)

For each set of strain calculations we do the following:

1. Strain the primitive lattice vectors for several strain values for the defined strain tensors

2. Use the DFT software to calculate the total energy of the system for each strained

structure

3. Fit the strain/energy data to (3.8) and extract the Cij

Following this basic procedure, Mehl et al. [15] were able to accurately predict the elastic

constants of several cubic and tetragonal systems with considerable correlation to experi-

mental values at 0 K.

Ackland et al. were the first that we are aware of to extend this basic approach to the

calculation of finite temperature elastic constants using DFT [11]. They performed some

thermodynamics calculations on tungsten and at each quasi-harmonic step applied tetragonal

strains to the system. They were then able to couple the thermal expansion to the data from

their strain energy surface to extract the elastic constants C11 and C12 with good accuracy.

They did neglect both anharmonic and electronic contributions to the free energy, but this

didn’t weaken the correlation between the calculated elastic constants and the experimental

counterparts. These findings were mostly used to validate certain approximations in their

calculations of thermodynamic properties and they didn’t report any findings for the elastic

constants of the other systems being studied.
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While this method of calculating the ELC of a material is helpful, there are systems for

which the preceeding approach would break down, particulary at high temperatures. This is

largely due to the anharmonic contributions to the free energy which are either partially, or

completely negelected. Another tools which can be used to calculate the elastic constants

of materials, and which can include in anharmonicity exactly [40] is molecular dynamics.

E. Molecular Dynamics Prediction of Elastic Constants

1. Molecular Dynamics Background

Molecular dynamics (MD) is a classical materials modeling tool which solves the Newtonian

equations of motion over several time steps to track the movement and interaction of particles

(atoms or molecules) within a defined unit cell [41]. The simulation is controlled by two

things, the ionic interaction potential, and the boundary conditions imposed on the system.

The ionic interactions are governed by a user defined potential energy function U , also

known as a force field. One of the key challenges in MD simulations is the development of

adequate force fields and the knowledge of which force field to use for a given simulation.

Typically, the force fields are developed by a fitting of experimental data to an equation

although sometimes quantum mechanics calculations are used to fine tune the fitting pa-

rameters. Examples of force fields that have been used in published works are the Morse

potential which has been used for example to model strain fluctuations in nickel [40]:

Φw(r) = ξ
(
e−2α(r−r0) − 2e−α(r−r0)

)
, (2.22)

and the Lennard-Jones potential which has been used in an argon simulation [42]:

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (2.23)

where ξ, α, r0, ε, and σ are parameters obtained from fits to experimental values. There are
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many potentials that can be used depending on the system and conditions being simulated.

In choosing a potential there are several factors that must be taken into account such as the

range of interaction and directionality of bonding within the material. As an example, a plot

of a Lennard-Jones potential for some arbitrary constants is included as Fig. 5.
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Fig. 5. Plot of a Lennard-Jones potential. The variables were set for σ = 3.0, and ε = 100.

The various potentials are suited for different tasks. For more complex systems such as

metals with long range interactions or ceramics which are highly directional different force

fields and techniques would need to be employed such as the embedded atom method [43] and

long range Finnis-Sinclair potential [44] to adequately describe the system. For simplicity

we restrict the current discussion to a simple pair potential.

Since MD employs Newton’s equations of motion it inherently ignores any quantum

mechanical effects. This is problematic for some scenarios where the quantum mechanical

details are either necessary or advantageous towards solving a given problem. This exculsion
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of quantum effects can also be a strength of MD simulations in other situations where this

omission simplifies an overly complex or otherwise impossible to calculate system. Certain

phenomena can only be described quantum mechanically and these would be impossible to

determine through MD simulations. On the converse, MD calculations should serve fine for

the prediction of many bulk properties such as elastic constants, provided of course that an

accurate potential energy function is used. Another advantage of MD is that it can account

for anharmonic effects and thermal excitations exactly [40] within temperatures where the

quantum effects are small compared to those of classical mechanics.

Each molecular dynamics simulation requires that some degrees of freedom of the sys-

tem be constrained and others allowed to relax over time. These constraints are the boundary

conditions of the problem and define what is called an MD ensemble [45]. Once the con-

straints are applied the remaining degrees of freedom are released and the system is allowed

to evolve over time according to the equations of motion, the laws of thermodynamics, and

the ensemble constraints; thus simulating as realistically as possible what would happen to

the system in real life. If for example, the number of atoms is to be conserved, any atom

that leaves the molecular dynamics cell for any reason must be replaced. Other examples

of ensemble parameters are the total energy (E), the volume of the unit cell (V), and the

enthalpy (H). In the literature the ensembles are usually denoted by a collection of letters

representing the properties that are to be constrained such as EV N , which is also known

as the microcanonical ensemble. Here E is the energy of the system, V the volme and N

the number of particles, all of which are to be kept constant at each time step of the MD

run. The definition of an ensemble is critical in that it defines the ’rules’ for the simulation

and consequently the data that can be extracted. It was the development of new ensembles

in the late 70’s and early 80’s that allow for the calculation of elastic constants from MD

simulation [46] [47].
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2. Elastic Constants from Molecular Dynamics Strain Fluctuations

In order to obtain macroscopic properties from MD we must look at the time behavior

statistics of many particles over time. In traditional molecular dynamics the microcanonical

orEV N ensemble [45] is used to track the movement of a given number of atoms contained

in a fixed volume over time while maintaining constant system energy. Andersen [46]

developed a different approach to MD which maintains constant enthalpy, pressure and

number of particles, or the HPN ensemble. The key difference between EV N and HPN

is that theHPN ensemble allows the size/volume of the molecular dynamics cell to change

with time thus introducing a new dynamic variable.

Parinello and Rahman built on Andersen’s thoery allowing both the size and shape of

the cell to change [47] throughout the MD run. They took a, b, and c as the vectors which

span the molecular dynamics cell and define h = (a,b, c). The new variable h can be treated

as a dynamical variable in the MD simulation [45]. The result is an HtN ensemble where

t is the thermodynamic tension and H is the total enthalpy of the system. The introduction

of the tension property t is what provides the link between MD and the theory of elasticity

and thus the calculation of elastic constants.

The elastic constants can be found from the fluctuation of the strain matrix ε over an

MD run for HtN and TtN ensembles. The strain matrix is defined as

ε =
1

2
(h̃−1

0 Gh−1
0 − 1) (2.24)

where G = h̃h. Parrinello and Rahman showed that the fluctuations of the strain tensor in

an HtN ensemble relate to the adiabatic elastic constants [48], [49] by

δ (εij, εkl) =

(
kBT

V0

)(
CS
)−1

ij,kl
, (2.25)

where V0 is the volume of the unstrained MD cell, CS is a 9x9 matrix of the adiabatic elastic
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moduli, and εijkl is the strain tensor. CS is defined as:

CS
ij,kl =

(
∂σkl
∂εij

)
S

(2.26)

with σkl representing the stress tensor. (2.25) has shown poor statistical convergence [42]

and this has lead to the development of alternative fluctuation formulae using other MD

ensembles.

As an alternative to using strain fluctuaions to calculate elastic constants, Ray and

Rahaman [50] have developed a formalism around the EhN enseble which involoves tracking

the fluctuations in stress over the MD run. There are two main advantages of this method over

the strain fluctuation method. First is the statistical convergence of the elastic constants [45],

and the second is that the calculated elastic constants are broken up into a summation of

several physically significant terms [40, 51, 52],

Cαβντ = − V0

kBT

(
〈σBαβσBντ 〉 − 〈σBαβ〉〈σBντ 〉

)
+〈Υαβντ 〉+

2nkBT

V0

(δανδβτ + δατδβν) . (2.27)

The first term is the due to the fluctuations of the microscopic stress tensor. The second

term is called the Born term which involves second derivatives of the potential energy and

the final term is the kinetic energy contribution which is directly related to the temperature

of the system [40]. These terms all have different contributions to the total elastic constants.

For example, in one of their studies, Cagin and Pettitt [40] demonstrate that for nickel the

Born term overestimates the total ELC, the fluctuation term has a significantly smaller yet

reducing effect and the kinetic energy term is usually quite small in comparison to the others.

The fluctuation formulas, can be implemented using the information about positions,

forces, etc. of the atoms over a sufficiently long MD run to predict the desired properties. It

is important to have sufficiently long MD runs so as to provide a large enough sample size to
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validate the use of the statistics used in the fluctuation formulae [40]. From these methods

various properties have been predicted and reported in the literature such as specific heat

and thermal expansion [49]. Further work has been done to find fluctuation formulas for the

microcanonical ensemble and this has proven successful in predicting the elastic constants of

argon [42]. More recently, others have built on the foundation developed by Ray, Parinello,

Rahman and others and formalized other approaches for finding elastic constants through

the use of an alternate fluctuation formula [51, 52] for the cannonical ensemble.

While both MD and DFT provide great tools for the calculation and prediction of

material properties, the ultimate benchmark of their success is their ability to be used in

real-world applications. In order for simulations to provide meaningful results it must

be shown that the simulations produce results that match up with reality. The only way

of validating theoretical approaches and computational methods in materials simulation is

how the results of the calculations ultimately correlate with experimentally obtained data.

F. Experimental Determination of Single Crystal Elastic Constants

The main purpose of this work is to develop and validate a method for the prediction of the

temperature dependence of single cystal elastic constants from first principles. The valida-

tion of that method comes by comparing the results of several systems with experimentally

tabulated values. This section therefore briefly describes the procedure followed for the

experimental determination of elastic constants.

The elastic constants (ELC) of a solid are propotional to the square of the velocity of

a wave as it propogates through the material:

C ∝ ρV 2. (2.28)

In (2.28) C is an elastic constant and V is the velocity of a wave propagating through the
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material. There are several different symmetry directions in a solid, each with different ELC.

In order to calculate the different ELC, an appropriate wave must simply be propagated in

the corresponding direction and the velocity measured. Table I is taken from [53] and

demostrates the relationships between directions, wave direction, and the corresponding

elastic constants.

Table I. Relationships between wave propagation modes and elastic moduli.

Velocity
Propogation Particle motion Relation of velocity

direction direction to elastic consant

v1 [110] [110] ρv2
1 = 1

2
(C11 + C12) + C44

v2 [110] [001] ρv2
2 = C44

v3 [110] [11̄0] ρv2
3 = (C11 − C12)/2

v4 [100] [100] ρv2
4 = C11

v5 [100] in (100) plane ρv2
5 = C44

In order to measure the elastic constants of a pure, isotropic, homogeneous material

we must begin with a single crystal. These may be grown in any one of a number of ways,

but their crystallographic homogeneity is vital to the prediction of single crystal ELC. The

presence of grain boundaries or defects would affect the wave velocities, cause scattering and

interference effects and hence the final calculated elastic constants would not be accurate.

The specimen to be tested is first analyzed for purity in order to report as close to perfect a

specimen as possible [54]. Typical impurities include both substitutional ions or interstitial

gasses,and their concentration must be kept extremely low in order to provide the most

accurate data. Once the specimen composition and purity have been verified it is either

oriented within an experimental apparatus or cut and polished to shape with respect to its

crystallographic directions and then mounted accordingly. The crystallographic directions
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of the specimen are found by Laue X-ray diffraction and the wave modes and corresponding

ELC are measured in the appropriate directions [55]. If the specimen needs to be cut or

polished great care must be taken to not initiate recrystallization or cold working in the

crystal [53]. Once the specimen is shaped and aligned a thermocouple is attached [54] and

the system is placed in a vacuum/furnace setup [55] so as to adjust pressure and temperature

according to the nature of the experiment.

Different techniques have been used to determine the velocity of a wave through a

crystal. Many works tend to use waves in the kHz range [56] while others (typically more

recent) works use waves the MHz range. At lower frequency the measurments are sensitive to

geometry and dislocation motion [53], so typically high frequecies are preferred. Regardless

of the type of wave chosen and the experimental setup used, the basic principle is the same:

propagate a wave through the crystal in a given crystal direction and then calcualte the Cij

according to (2.28).

The Cij can be calculated at various temperature/pressure combinations and then in-

cluded in experimental databases such as that of Simmons and Wang [57] which is commonly

referred to in the literature.
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CHAPTER III

AB INITIO THERMODYNAMIC AND ELASTIC PROPERTIES OF ALUMINUM

AND TUNGSTEN AT FINITE TEMPERATURES

A. Synopsis

An ab initio method for the prediction of temperature dependent thermodynamic and elastic

properties of non-magnetic metals is presented and validated for aluminum and tungsten.

Through quasi-harmonic lattice dynamics and density functional theory calculations a free

energy surface in temperature/volume/strain space is created, the local curvatures and slopes

of which yield the properties of interest. Anharmonic contributions to the free energy

are examined and their effect on final calculated properties are shown to be minimal for

aluminum but very significant in tungsten at temperatures above 60% the melting point.

Overall the calculated properties show good correlation with experiment and demonstrate

the need for a better accounting of anharmonicity in thermal free energy calculations from

DFT.

B. Introduction

Current and future technological challenges require new materials capable of meeting in-

creasingly demanding operating conditions. Usually, materials development tends to be

costly and time-consuming. Fortunately, increasingly sophisticated theoretical tools and

modeling approaches, coupled to the exponential growth of computing power have led to

the development of computational materials science as a field on its own [58, 59]. The use

of such computational approaches have lead to an acceleration of the materials development

process [60, 61], mainly through the reduction of the parameter search-space to be explored

in order to arrive at an optimal materials solution.
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One of the primary challenges facing the materials modeling community is the need to

account for and simulate physical phenomena occurring at multiple time and length scales.

On one extreme of the time/size spectrum there are atomic processes–atomic migration,

for example—which occur on the order of picoseconds, while at the other end there are

phenomena involving macroscopic changes in materials over the course of years–such as

creep. It is therefore of fundamental interest to develop theoretically sound links between

the various time and length scales involved in materials modeling.

For example, at the mesoscale, the phase-field method has proven enormously success-

ful at describing not only the microstructural evolution of materials but also their behavior

resulting from the coupling of their response to externally applied fields–elastic, chemical,

and magnetic [62]. Quantitative phase-field models[63], however, can only be obtained

when accurate parameters for the description of their thermodynamic, kinetic, elastic, mag-

netic, electric properties are available. Traditionally, such parameters have been obtained

experimentally. Unfortunately, a limitation to the phase-field approach is that there are var-

ious cases in which accurate information about the properties of a given phase are unknown

either due to the cost and difficulty in obtaining experimental measurement or in some cases

physical impossibilities in measuring the desired properties.

Molecular dynamics is yet another useful approach to materials modeling, allowing

the prediction of properties such as elastic constants [42][40] or examining phenomena

involving the collective atomic behavior, such as melting[64] and diffusion processes[65].

One of the greatest challenges in molecular dynamics simulation is finding interatomic

potentials that accurately describe the system. Like the input parameters for phase-field

models, these potentials are also parameterized from experimental data. Again, limitations

exist as to what systems can be simulated with molecular dynamics due to the lack of

experimental data or adequate parametrization of the appropriate interatomic reactions.

One possible way to obtain the needed input parameters for a given model is to sup-
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plement the empirical databases with quantum mechanical calculations of the electronic

structure of materials. These first-principles methods—not completely parameter-free as

they in turn are developed based on a number of approximations—provide the means to

investigate the interactions between atoms and molecules. Knowledge of these interactions

in turn allow a better understanding of the underlying physical basis for the relationship be-

tween atomic features and macroscopic behavior[3]. The information resulting from these

calculations can in turn be used to develop more quantitative models of physical phenomena

occurring at the meso/macroscale.

The purpose of our work is to develop a model to predict the thermodynamic and

thermo-mechanical properties of materials at finite temperature based solely on first prin-

ciples calculations. These properties can either be used in different modeling techniques

as input parameters or provide guidance to others in narrowing the search domain for high

temperature materials, for example.

Considerable work on finite temperature free energies and thermodynamics have been

done by many groups [38, 2]. Mehl et al. have done extensive work on the calculation of

single crystal elastic constants at 0 K [15]. They have examined several pure and binary

intermetallic systems with either cubic or tetragonal symmetry in the unit cell with consid-

erable correlation to experimentally obtained values. In their work on the thermodynamics

of tungsten, Ackland et al.[11] also examined the temperature dependence of the single

crystal elastic constants with marked success but did not extend the work to other elements

or compounds.

In the current work we outline a method for determining several thermodynamic and

thermo-mechanical properties of two pure metals, aluminum and tungsten and compare

the calculated results with experimental data in order to validate the method as well as

demonstrate some of its limitations. We use density functional theory (DFT) [19] and

quasi-harmonic lattice dynamics[2] to calculate free energy surfaces that include electronic,
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vibrational, and anharmonic contributions. From this free energy data we are able to extract

temperature dependent thermodynamic data such as enthalpy, entropy, Debye temperature,

and the Grunesien constant for each system. We also implement quasi-harmonic theory

to obtain temperature/volume correlations which we couple with 0 K elastic constants to

obtain the finite temperature elastic constants.

C. Methodology

1. Free Energy Calculations at 0 K

The ground state energies and electronic structures were calculated using density functional

theory [19](DFT), within both the local-density [21] (LDA) and generalized-gradient [24][66]

(GGA) approximations. The Vienna Ab-Initio Simulation Package (VASP) was used [32,

33] to perform the DFT calculations using projector augmented-wave (PAW) pseudopoten-

tials [67, 29]. The electronic configurations used were 3s23p1 for aluminum and 6s25d4 for

tungsten.

The structures were initially optimized by performing a relaxation calculation wherein

all degrees of freedom were allowed to relax using the first order Methfessel-Paxton smearing

method [68]. A second self-consistent static calculation was performed on the relaxed

structure using the tetrahedron smearing method with Blöchl corrections [67]. These static

calculations were performed to a precision of six significant figures with an energy cutoff

of 350 eV and 1x104 k-points per reciprocal atom. The energy cutoff and k-point density

ensured excellent convergence in the total energies calculated.

2. Contributions to the Free Energy

In order to extend the use of DFT to the prediction of finite temperature thermodynamic

and thermo-mechanical properties an accurate expression for the total free energy of the
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system throughout the temperature range of interest is necessary. In principle, all thermally

excited degrees of freedom—vibrational, electronic, magnetic—, as well as their contribu-

tions to the temperature-dependent free energy must be taken into account. However, the

systems examined in this work warrant the neglect of magnetic DOF, focusing instead on

electronic and vibrational DOF. Below, a brief overview of the contributions of the latter

to the total free energy is presented. Detailed descriptions of the methodology to calculate

these contributions are available elsewhere [38, 2, 39].

a. Vibrational Contributions

There are two primary ways to calculate vibrational properties from first principles; linear

response theory (LRT)[69] and the supercell (SC) approach [70]. In the SC method, atoms

are perturbed from their equilibrium positions and the resulting restoring forces are used to

calculate the force constants, which in turn correspond to second derivatives of the crystal

potential with respect to atomic displacements[2]. LRT, on the other hand, is a more accurate

approach as it calculates the force constants from second derivatives of the electronic crystal

energies[69]. While accurate, this last approach is computationally expensive and cannot

be easily applied to any ab initio code. Moreover, it has been shown that, at least for simple

systems [12], the SC method yields results equivalent to LRT. In both methods, the force

constants are then used to construct the dynamical matrix—essentially the force constant

matrix normalized by the mass of the interacting atoms—, whose eigenvalues correspond

to the frequencies of the normal (harmonic) modes of oscillation of the crystal [2].

In this work, the SC calculations are performed using the ATAT software package [71,

72, 73]. The software assists with the harmonic and quasi-harmonic lattice dynamics calcu-

lations by creating the necessary supercell perturbations based on the underlying primitive

cells. First-principle calculations using the VASP code were then used to calculate the inter-

atomic forces. Force-constants and the corresponding dynamical matrix are then obtained
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by relating the resulting forces to atomic displacements. In the SC method, the range of the

force-constants considered depends on the size of the supercell used. In this particular work,

the supercells used were comprised of 32 atoms and the force constants were calculated over

a range of approximately half the total supercell, in order to reduce periodicity artifacts. The

selected supercell sizes allow the inclusion of up to 3rd nearest neighbor interactions.

From the phonon DOS and usual statistical mechanics formulas, it is possible to cal-

culate the vibrational contributions to the free energy of the crystal, as a function of tem-

perature [2]:

Fvib (T ) = kBT

∫ ∞
0

ln

[
2 sinh

(
hν

2kBT

)]
g (ν) dν (3.1)

where g(ν) represents the phonon density of states, h is Planck’s constant and kB is Boltz-

mann’s constant. At constant volume, the harmonic approximation is accurate, especially

at low temperatures. As the temperature increases, under constant pressure conditions, the

contributions due to thermal expansion must be taken into account, as larger interatomic

spacings in general lead to a softening of the structure, increasing its entropy [2]. Harmonic

potentials, being symmetric, cannot account for thermal expansion and further corrections

must thus be applied.

In order to account for volume expansion, the quasi-harmonic approximation can be

used. This simple correction consists of performing harmonic calculations at different

volumes. These calculations yield a free energy surface in volume/temperature space, the

locus of the free energy minima as a function of temperature then yields the volume thermal

expansion. Accurate prediction of this relationship is critical for application of the quasi-

harmonic approach to predict temperature-dependent properties. Unless otherwise noted,

in this work we examined 7 volume expansions spanning -2% to +4% at 1% increments of

the 0 K equilibrium volume.
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b. Electronic Contributions

The electronic contributions to the free energy (Fel (V ) = Eel (V )−TSel (V )) are calculated—

within the one-electron approximation [38]—through the integration of the electronic den-

sity of states, resulting from the self-consistent calculation of the electronic structure at each

of the volumes considered in the quasi-harmonic approximation, according to[39]:

Eel (V, T ) =

∫
n (ε, V ) fεdε−

∫ εF

n (ε, V ) εdε (3.2)

Sel (V, T ) = −kB
∫
n (ε, V ) [f ln f + (1− f) ln (1− f)] dε (3.3)

where n (ε, V ) is the electronic DOS and f is the Fermi function. The electrochemical

potential is calculated self-consistently to ensure that at each temperature the total number

of electrons is conserved. Such self-consistent calculations are computationally expensive.

To reduce computational costs, the exact electronic free energy is calculated only at discrete

temperature intervals and then is fitted to a quadratic expression, as suggested by Asta et

al. [38]. It is important to note that this method does exclude electron-phonon interactions,

as well as direct changes in the electronic structure due to increased temperatures.

c. Anharmonic Corrections

One shortcoming of quasi-harmonic lattice dynamics is that it neglects anharmonic effects,

which result from non-vanishing third and higher-order derivatives of the crystal potential

with respect to atomic displacements [36]. Within the context of phonon dynamics, such

higher-order contributions result from phonon-phonon interactions, and normally occur at

temperatures higher than two-thirds of the crystal’s melting point[36]. In order to obtain a

more accurate representation of the total free energy it is possible, in principle, to incorporate

anharmonic contributions to the temperature-dependent free energy of the crystal in a direct
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fashion [13].

Based on higher-than-second-order expansions of the crystal potential, Wallace[36]

was able to develop an exact expression for the anharmonic free energy:

Fanhar = A2T
2 + A0 + A−2T

−2 + L (3.4)

with:

A2 =
3kB
Θ

(0.0078 〈γ〉 − 0.0154) (3.5)

where γ represents the Grüneisen parameter and the coefficients are based on a fit to em-

pirical data. Unfortunately, the last three terms of (3.4) cannot be easily determined, even

empirically. A crude approximation, based more on ignorance rather than knowledge, is

just to ignore them and consider only anharmonic corrections quadratic in temperature. Yet

another limitation of an application of (3.4) is the fact it is valid only in the classical limit and

breaks down as the temperature approaches 0 K. For example, if we include this expression

for anharmonic free energy into an expression for Cp we find that Cp(T → 0) ∝ T , but we

know that in the quantum limit Cp(T → 0) ∝ T 4[37]. In principle, this would not con-

stitute a serious problem since anharmonic effects are only important at high temperature.

However, this problem must be resolved if anharmonic contributions are to be added to the

vibrational+electronic free energies from 0K on.

Recently, Oganov[37] was able to extend the approach of Wallace and develop an

expression which is valid over all temperatures. Using thermodynamic perturbation theory

he obtained an expression for the anharmonic free energy as a function of temperature:

Fanh
3nkB

=
a

6


(

1
2
θ + θ

exp(θ/T )−1

)2

+2
(
θ
T

)2 exp(θ/T )

(exp(θ/T )−1)2
T 2

 (3.6)
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where a is proportional to A2 of Wallace by a factor of 1/2 and θ corresponds to the high-

temperature Harmonic Debye temperature, defined as θ = h̄
kB

(
5
3
〈ω2〉

)1/2 [36, 13]. In

this work, (3.6) is calculated at each volume considered in the quasi-harmonic correction,

with the parameter a calculated according to (3.5), with Θ and γ calculated directly from

first-principles.

d. Total Free Energy and Finite Temperature Thermodynamics

The total temperature-dependent free energy is simply calculated by adding the various

energy terms. This results in a free energy surface F (V, T ) [39]:

F (V, T ) = E0K(V ) + Fvib(V, T ) + Fel(V, T ) + Fanhar(V, T ) (3.7)

where E0K is the cold curve energy as a function of volume from the quasi-harmonic DFT

calculations, Fvib and Fel are the vibrational and electronic contributions to the free energy

calculated over the specified temperature range at each volume of the quasi-harmonic ap-

proach and Fanhar is the anharmonic free energy considering the correction by Oganov [37].

The zero-pressure free energy, and thermal expansion coefficient—is simply calculated by

identifying the locus of the minima of this surface as a function of temperature. The temper-

ature dependent values for enthalpy, entropy and specific heat can be obtained from partial

derivatives to the thermal free energy according to classical thermodynamics [74]. The

Bulk modulus is in turn calculated by fitting, at each temperature, the volume-dependent

free energy to an equation of state [75].

3. Finite-Temperature Elastic Constants

Mehl et al. have done extensive work on the calculation of 0 K elastic constants using DFT.

In this work, their procedure [15] is applied and then is coupled with the current approach of
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finite temperature thermodynamics in order to calculate the temperature dependence of the

elastic constants [11]. The elastic constants,Cij , relate changes in the energy of the crystal

with respect to finite strains:

E (ei) = E0 +
1

2
V
∑

Cijeiej +O
[
e3
i

]
(3.8)

For an arbitrary system there are at most 21 independent Cij . Symmetry arguments

reduce this to 3 independent elastic constants in the case of a cubic lattice such as for Al

and W; C11, C12 and C44. In order to isolate a particular Cij , the lattice must be strained

and the resulting changes in energies must be calculated. The energy of a crystal is much

more sensitive to volume changes than to changes in strains, and thus, high accuracy in

the calculation of elastic constants requires volume-conserving strains. For cubic crystals,

Mehl et al.[15] propose the use of volume conserving orthorhombic strains:


x 0 0

0 −x 0

0 0 x2

(1−x2)

 (3.9)

which reduces (3.8) to:

∆E(x) = V (C11 − C12)x2 +O[x4] (3.10)

The calculated Bulk modulus and the expression

B = (C11 + 2C12)/3 (3.11)

are then used to separate C11 and C12. In like, volume-conserving monoclinic strain can be

used to find C44:
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
0 x 0

x 0 0

0 0 x2

4−x2

 (3.12)

and (3.8) becomes:

∆E(x) =
1

2
V C44x

2 +O[x4]. (3.13)

By applying these strains (ei) to the crystal lattice and then using VASP to calculate the

energy of the system, the Cij can be determined. In order to extend this procedure through

finite temperatures, it is necessary to follow the following steps:

1. Strain the lattice several times at each quasi-harmonic volume; in this work we chose

5 volume conserving strains from 0-4% in 1% intervals.

2. Calculate F(V, e) for each volume with DFT.

3. Extract the Cij as a function of volume.

4. Fit the Cij(V ) data to the thermal expansion data obtained from the quasi-harmonic

free energy surface.

In essence, a free energy surface as a function of volume and strain is created. From

this, one can build an elastic constant surface in volume-temperature space. The volume

expansion data from the thermodynamic modeling serves as a parameterized curve along

this elastic constant surface from which the Cij can then be interpolated, as a function of

temperature.
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Table II. Experimental [76] and calculated lattice parameter for aluminum and tungsten.
Both the LDA and GGA predictions are shown. Values are in Å.

System Calculated Experiment
Al GGA 4.046 4.050
Al LDA 3.983 —
W GGA 3.172 3.165
W LDA 3.126 —

D. Calculated Properties and Discussion

1. Properties at 0 K

Table II enumerates the calculated lattice parameters for both the LDA and GGA along with

experimentally obtained values. The calculated lattice parameter within the GGA is within

0.1% of the experimental value for aluminum and 0.2% higher for tungsten. For both systems

the LDA underestimates the lattice parameter, by 1.7 % in the case of aluminum and 1.2 %

for tungsten. Vibrational properties such as the Debye frequency and Debye temperature are

tabulated in Table III while the bulk modulus, elastic constants and their corresponding slope

at room temperature for aluminum and tungsten are displayed in Table IV. At approximately

50% of the melting point the calculated bulk modulus is approximately 8 GPa lower than

the experimental values for aluminum. Since we use a relationship involving C11 , C12, and

the bulk modulus to separate and solve for the elastic constants in the modified strain energy

equation this offset in the calculated bulk modulus propagates through the calculation of the

elastic constants yielding a similarly 8 GPa low calculated C11 and C12.
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Table III. Calculated vibrational properties of aluminum and tungsten. νD represents the
Debye frequency, Θn is the Debye temperature with respect to the nth moment
of the phonon DOS, γm is the Grunesien constant at temperature m. Θ−2 is also
known as the Debye-Waller temperature.

System νD Θ0 Θ1 Θ2 Θ−2 γ0 γ298

Al
Calc 7.71 370 375 381 369 2.31 2.39
Expt 394‡ 2.1†

W
Calc 6.14 295 292 290 321 1.84 1.86
Expt 325§ 310‡

† Data from Gersten & Smith [77]
‡ Data from [78]
§ Data from [79]

Table IV. Calculated elastic properties of aluminum and tungsten at 0K and room tempera-
ture.

System
K C11 C12 C44

0 K 298 K dB/dT† 0 K 298 K dB/dT† 0 K 298 K dB/dT† 0 K 298 K dB/dT†

Al
Calc 71 66 -2.7 111 105 -3.2 65 62 -1.0 34 32 -1.2
Expt‡ 79 76 -0.7 107 106 -3.2 61 60 -1.0 28 28 -1.0

W
Calc 307 303 -2.0 516 512 -2.3 203 201 -1.1 135 134 -0.8
Expt§ 314 311 -3.1 533 523 -6.3 205 205 -1.6 163 161 -0.9

† At 298 K, units are GPa/K x10−2
‡ 0K data from Simmons [57], all other data from Gerlich [53]
§ Data from Featherston [54]

2. Thermodynamic Properties at Finite Temperatures

a. Aluminum

Accurate prediction of thermal expansion data calculated by quasi-harmonic lattice dy-

namics is critical in the characterization of temperature dependent properties from first

principles. Fig. 6 demonstrates the calculated thermal expansion properties to over 95% of

the way to melting. For aluminum the anharmonic and electronic corrections to the free en-

ergy have small effects on the thermal expansion data. At high temperatures the electronic

contributions indicate greater thermal expansion but the anharmonic corrections actually
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negate the electronic effects and even decrease the value predicted by the quasi-harmonic

approximation. These details about contributions to the thermal free energy provide better

fitting parameters to interpolate temperature dependent properties.
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Fig. 6. Thermal expansion data for aluminum. The experimental data are from Kroeger [80]
and Nix [81].

Since aluminum has a melting point of approximately 933 K, the finite temperature

properties are examined up to 900 K. Temperature/property relationships become more

erratic very near the melting point, making it difficult to predict accurate data within the

assumptions used. As can be seen in Fig. 7 the calculated temperature dependence of the

enthalpy, entropy and specific heat are predicted very close to experimentally tabulated

values. Fig. 7(b) demonstrates the effect of electronic and anharmonic contributions on the

prediction of the specific heat. The electronic contributions raise the specific heat and tend to

overestimate it while the anharmonic contributions effectively balance out this contribution,

providing very accurate data throughout the temperature range. As the temperatures get

within 90% of the melting point we expect anharmonic terms to take a more dominant

role and result in a breakdown in validity of the anharmonic assumptions used in the model.

Throughout the thermodynamic analysis aluminum proves to be a very well behaved system

within the approximations made.
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(a) Calculated and experimental[82] enthalpy,
entropy and specific heat.
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Fig. 7. Enthalpy, entropy and specific heat of aluminum. The electronic contributions and
anharmonic correction are extremely important in accurately predicting the specific
heat.

b. Tungsten

While aluminum is well behaved within the approximations outlined above and the calcu-

lations provide excellent agreement with experimental values, there are limitations of the

current approach. An analysis of tungsten, especially at high temperatures indicates some

of these limitations and indicates areas of future study. The volume thermal expansion data

of tungsten is shown in Fig. 8. The calculated and experimental results agree well up to

approximately 2500K. At this point the experimental data takes a sharp turn upwards, a

phenomenon not captured by the calculations. At this point the anharmonic corrections

decrease the accuracy of the model calculations, most likely due to the neglected terms

from (3.4). In their calculations for tungsten, Ackland et al. neglect both electronic and

anharmonic corrections, thus giving them a less thorough yet conveniently more accurate

volume expansion relationship [11] which ultimately yields greater correlation with experi-

ment for elastic constant predictions. Our deviation between calculation and experiment for

thermal expansion will propagate through the thermodynamic and thermo-mechanical prop-



44

erty calculations resulting in pronounced errors above 2500 K. The calculated properties in

Fig. 9 demonstrate the temperature dependence of specific heat, entropy and enthalpy up

to 3500 K. Both the entropy and enthalpy are well characterized by our method throughout

the temperature range while the specific heat shows an exponential growth above 2500 K

that is unaccounted for in the calculations.
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Fig. 8. Volume thermal expansion for tungsten. The two data sets were normalized relative to
the room temperature volume. Experimental values are from the work of Dubrovinsky
et al. [83].
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(a) Calculated and experimental [82] en-
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Fig. 9. Thermodynamic property calculations for tungsten.
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3. Elastic Constants at Finite Temperatures

a. Considerations in the Calculation of Elastic Constants from Free Energies

This section discusses some computational questions and our findings in an attempt to thor-

oughly validate several choices and simplifications made in our calculations. In particular

we explain some symmetry effects, look at phonon DOS at the various volume conserving

strains, and explain the use of a correction to the calculated bulk modulus which allows for

better comparison between the calculated properties of aluminum and the corresponding

experimental values.

Initially we applied symmetric strains about the equilibrium volume for use in the

calculation of elastic constants. The phonon DOS for symmetric strains and their relative

impact on the unstrained DOS is demonstrated in Fig. 10. In Fig. 10(a) we can see that

performing a =+2% strain on the lattice had the same resulting DOS and cold curve energy

as that of a -2% strain. This is a logical consequence of the combination of symmetries

involved: when applying an orthorhombic strain to a cubic system, the resulting system is

identical, just rotated differently in space. By examining the various phonon DOS as shown

in Fig. 10(b) we can make inferences about the effect these volume conserving strains will

have on the total free energy of the system. Also, by plotting the DOS on the same axes we

are able to see that they are identical at symmetric strains. Due to these symmetry results we

feel justified in only performing positive strain calculations in our calculation of the elastic

constants, thus decreasing the required computational time.

In addition to the symmetry of the strains applied in (3.8) we examined the temperature

dependent free energy at each of these strains. Upon inspection of Fig. 10(b) we can see three

distinct phonon DOS, at 0, 2 and 4% strain of the lattice. The DOS have some distinctions

but the frequencies at which the peaks occur and the overall area under the curve remain

similar to each other. Upon investigation we discovered that the impact of these distortions
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Fig. 10. Effect of volume conserving strains on the phonon DOS of FCC Al.

on the total free energy of the system is minimal in comparison with the volume expansion

effects that are accounted for with quasi-harmonic lattice dynamics. Fig. 11 displays the

free energies of structures at several volumes and several strains at each volume. A similar

analysis was done by Ackland et al. [11], from which we can infer that the impact of the

phonon contributions to the free energy due to a given volume-conserving strain are quite

small relative to the corresponding volume effects. Since the calculation of free energy is

related to an integration of the phonon DOS, and the DOS of the volume conserving strains

have the similar features mentioned this makes sense. This is a very useful result because

it allows us to neglect (as a minor approximation) computationally costly lattice dynamics

calculations at each of the volume conserving strains. Instead of performing lattice dynamic

supercell calculations at each strain we simply calculate the ground state energy of a single

primitive cell and use this cold curve data coupled with the thermal expansion data to extract

the elastic constants. In the case of our aluminum calculations with five volumes and five

strains at each volume this saves us from making an additional 25 supercell calculations

which would effectively quintuple the computational time needed for DFT calculations on

the parallel computing cluster. Naturally these additional calculations could be performed
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in the hopes of attaining greater accuracy, but with volume effects dominating so clearly,

the return would be minimal.
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Fig. 11. Relative free energies for volume conserving strains. The data for each volume of
the quasi-harmonic approximation are included. The solid lines represent the nor-
malized volumes (in relation to the ground state) from the quasi-harmonic lattice
dynamics and the dashed lines the free energy at corresponding volume conserving
strains for elastic constant calculations. By neglecting thermal free energy cal-
culations at each strain and following just the volume effects we drastically cut
computation time by performing simple primitive cell energy calculations in lieu of
supercell lattice dynamics.

In the case of systems with cubic symmetry we use (3.10) and (3.11) to solve forC11 and

C12. Doing so depends on the calculated bulk modulus obtained from fitting an equation of

state to the lattice dynamics calculations. Previously we demonstrated an 8 GPa difference

between the calculated bulk modulus and experimental results. If this difference is ignored,

an error will propagate through the calculation of the elastic constants. As a rough correction

we examine the effect of adding an 8 GPa error term to the bulk modulus as depicted in

Fig. 12. Ultimately we would like to find a different expression for separating C11 and C12

and make the calculations independent of the fit of the bulk modulus. While this technique

requires an experimental data point, it does provide for better comparison with experiment

of the final calculated elastic constants. This error term does not change the slopes of the
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calculated elastic constants which represents softening of a material with temperature and

can be useful. Throughout the remainder of this paper all results for aluminum will reflect

this 8 GPa shift while for tungsten no such correction has been made. We hope to eliminate

the need for this error term soon with additional strain energy calculations.
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Fig. 12. Effect of shifting the bulk modulus to better match experimental values on the
calculated elastic constants.

Since most experimental data for the elastic constants is currently obtained via ultra-

sonic measurements which yield the adiabatic elastic constants it is useful for us to convert

our calculated elastic constants (which are inherently isothermal) to adiabatic for compar-

ison [84, 85, 86]. This conversion is a function of the thermal expansion data and the

isothermal elastic constants as given by:

CS
ij = CT

ij +
V λiλjT

Cv
, (3.14)

for C11 and C12 with:

λi = λj = α
(
CT

11 + CT
12

)
(3.15)

andCS
44 = CT

44 due to cubic symmetry. The result of this transformation along with the shift

in the bulk modulus is plotted in Fig. 13.
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Fig. 13. Effects of the bulk modulus corrections and isothermal to adiabatic transform on the
calculated elastic constants. Experimental data is that of Gerlich. [53]

b. Calculated Elastic Constants of Aluminum and Tungsten

It can be seen in Fig. 14 that there are various experimental data sets for the elastic constants

of aluminum over finite temperatures with considerable variations in magnitudes and trends.

All three data sets were obtained using the composite oscillator method with the distinction

that the data of Gerlich was found using higher frequency waves which reduces specimen

alignment errors in the experiments. A fourth data set (not shown) of Kamm and Alers [87]

represents the elastic constants at low temperatures and matches up well with those of

Gerlich and Tallon in that temperature range. Of particular note is the C12 data of Tallon

which show a slight increase with temperature. While we are unsure as to why Tallon’s

results appear the way they do, we see nothing else in the literature to explain this upward

or even a level trend for C12. When looking at the disparity of the several data sets our

calculated values fit well within the experimental envelope of these three data sets and agree

particularly well with the data of Gerlich et al. which we will choose for comparison for

the remainder of this work.

Fig. 15 depicts the final calculated elastic constants of aluminum with all corrections

discussed and compare the results with experimental data. Calculated values for aluminum
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including all correction factors agree extremely well with experiment. Considering the

variation among experimental data sets we are very pleased with the first principles pre-

dictions. For aluminum the quasi-harmonic approximation and corresponding free energy

calculations prove to be extremely adequate for predicting the temperature dependent elastic

constants.

0 100 200 300 400 500 600 700 800 900

Temperature (K)

75

80

85

90

95

100

105

110

115

120

11
)
a
P

G(
C

Calculated
Sutton
Tallon
Gerlich

0 100 200 300 400 500 600 700 800 900

Temperature (K)

50

55

60

65

70

75

21
)
a
P

G(
C

Calculated
Sutton
Tallon
Gerlich

Fig. 14. Comparison of calculated elastic constants with experimental data.
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Fig. 15. Final results for calculated elastic constants of aluminum compared with the data of
Gerlich.

For tungsten we obtain fair results, but not nearly as good as for aluminum. Tungsten is

a highly anharmonic system at high temperatures [88] and therefore our approximations will

limit our ability to accurately describe high temperature properties. In fact, the anharmonic
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corrections we implement tend to have an adverse effect on property calculations as will be

demonstrated. It was mentioned previously that we currently have no way of accounting for

anything but the first term in (3.4). While this was sufficient for aluminum, these missing

terms have significant impact on the anharmonic contributions to the thermal free energy

of tungsten and propagate through the thermodynamic and thermo-mechanical property

calculations.

Experiments show a strong softening of the bulk modulus of tungsten above 2000 K

(Fig. 16), a phenomenon not captured by the DFT results. At approximately this same

temperature the calculated C11 becomes greater than the experimental comparison and C12

deviates more from the almost constant experimental value.
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Fig. 16. Calculated bulk modulus and elastic constants for tungsten.

E. Summary and Conclusions

We have developed a method for the calculation of thermodynamic and thermo-mechanical

properties of pure, cubic, non-magnetic, materials through first principles calculations and

shown its validity and limitations for aluminum and tungsten. Using density functional the-

ory and quasi-harmonic lattice dynamics we constructed thermal free energy surfaces and

extracted thermodynamic and vibrational quantities such as entropy, enthalpy, specific heat,
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Grunesien constant and Debye temperature. Overall, the method presented demonstrates

good agreement with experimental values. We are able to predict the temperature depen-

dence of the elastic constants of aluminum within a few percent up to 900 K and those of

tungsten within 10% for temperatures under 2000 K. The tungsten calculations demonstrate

some of the limitations of this model, especially the effect of anharmonic contributions to

the free energy and the propagation of these effects into derived properties. We also exam-

ine several factors that contribute to the thermal free energy and demonstrate that volume

expansion effects have the predominant role in the temperature dependence of the elastic

constants when compared to vibrational or thermal-electric contributions. We also predicted

volume thermal expansion and coupled it with cold curve strain energy calculations in order

to extract the thermal behavior of the isotropic single crystal elastic constants.

Our key findings and conclusions can be summarized as follows:

1. The calculated thermodynamic and thermo-mechanical properties for aluminum agree

very well with experiment throughout the solid phase.

2. The same calculated properties for tungsten are only reasonable up to approximately

60-70% of the melting point.

3. Volume expansion effects are the overwhelming predominant factor in the softening

of elastic constants with increasing temperature

4. Anharmonic contributions to the free energy as demonstrated with the tungsten cal-

culations are most likely the greatest cause of poor correlation between calculation

and experiment for that system.

5. The poor prediction of the temperature/volume relationship in tungsten propagated

through the mechanical property calculations, making our predictions of C11, C12,

C44, and the bulk modulus for tungsten only reasonable up to approximately 2000 K.
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6. The anharmonic correction factor of Oganov was shown to improve experimental

correlation of calculated properties for aluminum and degrade the same for tungsten

at high temperatures. We expect that the degradation has to do with the neglected

terms in (3.4)

As an additional consequence of this work, an open source, Python-based suite of

computational utilities to automate the preparation, cluster submission and management,

and post processing of these calculations has been created and will be available in the public

domain shortly.
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CHAPTER IV

AB INITIO THERMODYNAMIC AND ELASTIC PROPERTIES OF B2 NIAL, RUAL

AND IRAL AT FINITE TEMPERATURES

A. Introduction and Motivation

On many occasions, lack of materials with optimal sets of attributes constitute limiting

factors in many applications where all the other components of superior technology are

already in place. In particular materials that will withstand higher and higher temperatures

are in great demand. Recently, there has been interest in alloys containing platinum group

metals [89, 90, 91] (PGM) as potential higher temperature alternatives to nickel based su-

peralloys [4]. These new alloys could be used in bond coats of thermal barrier coatings

or as structural materials in turbine systems. With new materials capable of withstand-

ing higher temperatures the thermodynamic efficiency of power generation and propulsion

systems could be increased, resulting in lower-cost and less environmental impact. Of the

several potential high-temperature intermetallic,s NiAl has been well characterized over the

past few decades while other potentially higher temperature alternatives have only recently

begun to be investigated [92]. In this work we examine the characterization of the ther-

modynamic and mechanical properties of NiAl, RuAl, IrAl from finite temperature first

principles calculations. It is hoped that the present work will provide a fundamental the-

oretical understanding and assist experimentalists in the search for new high-temperature

materials.

The role of first principles approaches and quantum mechanical calculations in mate-

rials science is to help us understand the fundamental, microscopic basis for macroscopic

behavior. This understanding may then lead to predictions of related phenomena which

rely on similar atomic-level interactions [3]. Some of the properties of interest in materials
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science include structural and mechanical properties and how they evolve with changes in

temperature. For example, a correct understanding of the thermo-elastic behavior of an

alloy is vitally important to anticipate the structural reliability of bond-coats or hardening

precipitates based on the intermetallics mentioned above.

The purpose of this work is to present the temperature dependence of several ther-

modynamic and elastic properties of B2 NiAl, RuAl and IrAl which have been calculated

from first principles. In the process, the same properties have been calculated for the pure

consituent systems fcc Al, Ni, Ir and hcp Ru to provide validation for the calculations. Previ-

ous work on finite temperature thermodynamics has been done by several groups including

predictions of properties in the Al-Sc system [38], copper [93], W, NiAl, and PdTi [11] and

others [39]. Overall, these groups have found very good correlation with experiment and

have been able to develop systematic methodologies and tools for such property predictions.

Mehl et al. have laid much fundamental groundwork in the field of ab initio prediction of

elastic constants at 0 K [15]. Later, this work was linked with finite temperature thermo-

dynamics [11]. Our work extends what these and other groups have done [2, 13, 70] and

applies it to materials, such as B2 RuAl and IrAl that still have not been fully characterized.

In this paper we briefly review the methods for the calculation of thermodynamic and

thermo-mechanical properties from first-principles and present calculated finite temperature

thermodynamic properties and elastic constants for NiAl, RuAl, IrAl as well as their ele-

mental constituents. The calculated properties agree well with experiment where available

including phonon density of states, thermodynamic quantities, and elastic constants. The

first-principles calculations were done within the framework of density functional theory

and quasi-harmonic lattice dynamics to calculate the ground state energy and vibrational

contributions to the total free energy, respectively. The electronic degrees of freedom and

intrinsic anharmonicity are accounted for while magnetic and configurational contributions

to the free energy are neglected. These approximations and tools provide property calcu-
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lations that in general agree very well with experimentally obtained values when available.

The calculated temperature dependence of the coefficient of thermal expansion for the B2

phases demonstrate a similar slope to experimentally obtained values yet the first-principles

predictions tend to overestimate its magnitude. We find that the generalized gradient (GGA)

and local density (LDA) approximations provide bounding predictions for the temperature

dependence of the elastic constants.

B. Methodology

The thermodynamic properties considered in this work are the enthalpy, entropy, specific

heat at constant pressure, and the linear coefficient of thermal expansion. Each of these

quantities can be derived from local slopes and curvatures of the free energy surface in

volume/temperature space:

F (V, T ) = E0K(V ) + Fvib(V, T ) + Fel(V, T ) + Fanh(V, T ). (4.1)

HereE0K is the ground state electronic energy, andFvib,Fel, andFanh, represent vibrational,

electronic, and anharmonic contributions to the free energy, respectively. Since all terms

in (4.1) are a function of volume—and temperature—we make use of the quasi-harmonic

approximation[2] and thus account for thermal expansion in the material [10, 35].

The ground state energy was calculated using density functional theory(DFT) [19]

within both the local-density [21] (LDA) and generalized-gradient [24, 66] (GGA) approx-

imations as implemented in the Vienna Ab-Initio Simulation Package (VASP)[32, 33]. The

calculations were performed using projector augmented-wave pseudopotentials [67, 29].

All calculations were done with a cutoff energy of 350 eV and the convergence criteria

was set to a maximum difference of 1E-6 eV. In all calculations the k-point mesh was set

to a density of 10,000 k-points per reciprocal atom. Initially the lattice parameters of the
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ground structures were optimized allowing all degrees of freedom to relax using the first

order Methfessel-Paxton smearing technique [68] and then a final self consistent calculation

was performed using the tetrahedron smearing method including Blöchl corrections [67].

The atomic configurations used were 3s22p1 for Al, [Ar] for Ni, 5s14d7 for Ru, and 6s15d8

for Ir.

The vibrational degrees of freedom are accounted for through the force constant (or

supercell) method [70] as implemented in the ATAT software package [71, 72, 73]. Which

calculates the vibrational thermal free energy through:

Fvib (T ) = kBT

∫ ∞
0

ln

[
2 sinh

(
hν

2kBT

)]
g (ν) dν. (4.2)

The electronic contributions to the free energy are calculated self-consistently using the

one-electron approximation as outlined by Asta [38]. In this method the electronic density

of states is integrated at each quasi-harmonic step according to:

Fel (V, T ) =

∫
n (ε, V ) fεdε−

∫ εF

n (ε, V ) εdε. (4.3)

This contribution can then be included as a simple additive term to the total free energy of

the system [39].

Since the quasi-harmonic approximation is unable to account for intrinsic anharmonic

contributions to the free energy we implement the findings of Oganov & Dorogokupets [37].

They express the anharmonic contributions to the free energy as

Fanh
3nkB

=
a

6


(

1
2
θ + θ

exp(θ/T )−1

)2

+2
(
θ
T

)2 exp(θ/T )

(exp(θ/T )−1)2
T 2

 (4.4)

where a is found according to Wallace [36]. Wallace’s coefficient is a function of both the

Grüneisen constant and Debye temperature which are also calculated through first-principles
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methods in this work, without resorting to any experimental data.

a =
3kB
2Θ

(0.0078 〈γ〉 − 0.0154). (4.5)

The calculation of the temperature dependence of the single crystal elastic constants

Cij were performed by building on the work of Mehl [15] and Ackland [11]. At each

volume considered within the quasi-harmonic approximation, the lattice was strained and

the isothermal elastic constants extracted according to the strain energy equation

E (ei) = E0 +
1

2
V
∑

Cijeiej +O
[
e3
i

]
. (4.6)

These strain values were then fit with a parameterized curve from the volume expansion data

and the corresponding temperature dependence of the elastic constants was obtained. These

values represent the isothermal elastic constants and since the majority of the literature

reports the adiabatic constants the calculated values are then converted to their adiabatic

counterparts through the use of the standard thermodynamic relation:

CS
ij = CT

ij +
V λiλjT

Cv
, (4.7)

with:

λi = λj = α
(
CT

11 + CT
12

)
(4.8)

due to symmetry. These values can then be compared with experimentally obtained values

obtained through adiabatic techniques, such as inelastic neutron scattering, raman spec-

troscopy and so forth.

C. Calculated Properties of the Constituent Elements

The ground state lattice parameter, bulk modulus and elastic constants of pure Al, Ni, Ir

and Ru are found in Table V for both the GGA and LDA. As expected, the LDA tends to
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over-bind and thus underestimate the lattice parameter [3] of all the systems. This over-

binding also results in the LDA predicting higher elastic constants. From (4.6) the elastic

constants are seen to be proportional to the curvature of the strain energy relationship shown

in Fig. 17. The strain energy of the LDA demonstrates greater curvature than that of the

GGA, resulting in the higher ground state elastic constants.

Table V. Ground state mechanical properties for Al, Ni, Ir and Ru.

System a ()† K (GPa) C11 (GPa) C12 (GPa) C44 (GPa)
GGA LDA expt. GGA LDA expt. GGA LDA expt. GGA LDA expt. GGA LDA expt.

Al 4.05 3.98 4.05 72.2 81.9 79.4 103.0 118.6 114.3 55.1 61.9 61.9 34.0 38.5 31.62
Ni 3.52 3.42 3.52 196.8 252.7 187.6 244.4 313.4 261.2 169.9 219.1 150.8 x 104.7 132.3 131.7
Ir 3.88 3.82 3.84 341.0 402.2 354.7‡ 564.0 657.3 580.0‡ 228.1 273.0 242.0‡ 243.1 285.8 256.0‡

Ru 2.73 l 2.71§ – – 315.2§ – – 576.3§ – – 187.2§ – – –

Experimental bulk modulus and elastic constant data from Simmons & Wang [57]
† Experimental lattice parameters from Gersten & Smith [77]
‡ Data corresponds to 300 K
§ Data corresponds to 4 K
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Fig. 17. Difference in ground state energy as a function of volume conserving strain for
pure Ni. The difference in curvature between the LDA and GGA data is one of the
key reasons why elastic constants calculated with the LDA are higher than those
calculated with the GGA.

Vibrational contributions to the free energy play a predominant role in the tempera-
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ture dependent property calculations. Since these degrees of freedom are accounted for

through phonon behavior as calculated through lattice dynamics [34] a brief validation of

the phonon dispersion and density of state proves insightful. Fig. 18 represent the calculated

phonon density of states (DOS) for Ni. The DOS shows excellent agreement between the

calculations and experimental results. In the case of Ni, the supercell was constructed of

40 atoms and the force constants were evaluated through the third nearest neighbors. Since

the agreement with experiment is good the choice of supercell size is justified and the vi-

brational contributions to the free energy are assumed to be adequately described within the

approximations made.

While the phonon DOS gives a point by point evaluation of phonon properties, in

calculating thermodynamic quantities what is most important is the mean behavior of the

phonon DOS. An accurate phonon DOS is critical to the development of the thermal free

energy surface since (4.2) relies on numerical integration of this DOS (g(ν)). The integration

has a tendency to ’smooth’ out small discrepancies as long as the overall trends and general

location of the peaks within the DOS are adequately accounted for.
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Fig. 18. Phonon density of states for Ni. Calculation of the vibrational contributions to the
free energy depend on an accurate representation of the phonon density of states.

With the vibrational properties verified we look at the results from the combination

of the ground state, vibrational, electronic, and anharmonic contributions to the free en-
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ergy from which we extract valuable thermodynamic information about the system. Based

on classical thermodynamics we can take local slopes and curvatures of the free energy

surface [9] to find the heat capacity at constant pressure, entropy, relative enthalpy, and

coefficient of thermal expansion for each system being investigated. Fig. 19, demonstrates

these calculated thermodynamic quantities for Ni. Similar plots for the other elements have

been included in the supplemental materials section of this chapter.
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Fig. 19. Key thermodynamic properties of pure Ni. On the left are the specific heat, entropy,
and relative enthalpy of Ni from 0-1700 K with experimental data taken from the
compilation of Barin [82]. On the right is the calculated CTE for Ni within both the
GGA and LDA. The LDA significantly understimates the CTE at increasingly high
temperatures while the GGA yields excellent experimental correlation with the data
of Kollie [94].

The temperature dependent Cp, S, and H − H298 show excellent correlation with

experimentally tabulated values. For many systems the coefficient of thermal expansion

(CTE) is more difficult to calculate accurately since it requires the calculation of a second

order numerical derivative. For Ni the predicted CTE is in almost exact agreement with the

tabulated values, except for the characteristic spike [95] due to the magnetic order/disorder

transition in both the CTE and Cp around 600K which is not reflected in the calculations.
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Since this anomaly is due to magnetic effects near the Curie temperature [96] and magnetic

degrees of freedom have been neglected in the present calculations we would not expect to

see such a phenomenon.

By coupling the volume thermal expansion behavior parameterized from local minima

on the thermal free energy surface with strain energy calculations at each quasi-harmonic

step we extract the temperature dependence of the single crystal elastic constants Cij . Our

calculated predictions for Al, Ni, and Ir are displayed in Fig. 20 along with experimental

comparison. The majority of experimentally obtained Cij for these three systems tend to
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Fig. 20. Calculated temperature dependence of the elastic constants of the Al, Ni, and Ir.
Dotted lines represent experimental work, solid lines, predictions due to the LDA
and dashed lines those found from the GGA calculations. We have yet to implement
the calculation of elastic constants in non-cubic systems and therefore the elastic
constants of pure Ru (which has an hcp structure) were not calculated. For Ir, the
values for C44 are higher than those for C12, this is unique among systems studied
in this work. The experimental results are taken from the work of Gerlich [53],
Simmons and Wang [57], and Macfarlane [97] for Al, Ni, and Ir respectively.

lie within the limits set by the GGA and LDA calculations. The C12 of Al is predicted

remarkably well by the LDA while C44 is better represented by the GGA calculations and
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C11 is close to the mean of the two approximations. Different trends are seen in Ni and for

Ir there is not much available data for comparison. It seems that at this time there is no clear

answer as to wether the GGA or LDA should be used in such calculations. It is noteworthy

that the slopes of the plots in Fig. 20 are practically identical between the LDA and GGA in

all cases. The largest deviation from this behavior is in Al at very high temperatures where

the GGA drops off slightly. This seems to indicate that the softening behavior of a given

Cij due to thermal expansion is adequately described by either approximation.

D. B2 Phases

With the model demonstrated for these simple systems, the thermodynamic and thermo-

mechanical properties of NiAl, RuAl, and IrAl have been calculated in the same fashion as for

their unary constituents. Of these three systems NiAl is the most thoroughly characterized to

date. RuAl [8, 98] and IrAl [6] have gained exposure in recent years due to their potential as

high temperature materials but a comprehensive study of their vibrational, thermodynamic

and mechanical properties has yet to be reported. In this section we present our predictions

for the same thermodynamic and mechanical properties of NiAl as were calculated for the

simple systems. We compare these results with experiment when available and note some

of the strengths and weaknesses of the model. We then present our prediction for the same

properties for RuAl and IrAl and leave them as targets for further theoretical study and

experimental validation.

In the implementation of the supercell (SC) method for the calculation of force constants

and vibrational properties we tested several ranges over which the force constants and

subsequent properties should be calculated. In Table VI we list the calculated force constants

for first and second nearest A-B bonds. RuAl is shown to have the strongest interaction

between dissimilar ions in the closest A-B pairs and also the only positive force constant for
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the second nearest A-B neighbor. All the second nearest neighbor interactions are extremely

week in comparison with their first nearest neighbor counterparts. The calculated force

constants seem to indicate that these three systems are dominated by short range interactions,

suggesting that the supercell sizes chosen are adequate for predicting with high degree of

accuracy the properties of these intermetallics.

Table VI. Force constants for the first two nearest AB neighbors for B2 phases. Units are in
eV/Å.

System 1stNN 2ndNN

NiAl 2.09 -7.6E-4

RuAl 3.07 1.0E-3

IrAl 2.51 -5.7E-2

The Debye temperatures, frequencies, and Grüneisen constants have been calculated

according to lattice dynamics and the results are summarized in Table VII. The specific heat

Table VII. Calculated vibrational properties of aluminum and tungsten within the GGA. νD
represents the Debye frequency, Θn is the Debye temperature with respect to the
nth moment of the phonon DOS, γm is the Grunesien constant at temperature m.
Θ−2 is also known as the Debye-Waller temperature.

System νD (THz) Θ0 Θ1 Θ2 Θ−2 γ0 γ298

NiAl 8.38 402 420 438 434 2.09 2.15
RuAl 8.64 415 432 447 442 1.97 1.99
IrAl 7.96 382 413 440 326 2.21 2.24

Debye temperature (Θ2) and the Grüneisen constant at 0 K (γ0) are used in the calculation

of (4.5) in order to approximate anharmonic contributions to the free energy. Θ2 is also

a critical parameter in the calculation of the total system entropy and specific heat. The
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values of Θ2 for NiAl and IrAl are found to be almost identical and that of RuAl is just over

2% higher than NiAl. These similarities will carry over into the prediction of total system

entropy and specific heat and will be discussed shortly.

The phonon DOS is one of the key parameters in the prediction of finite temperature

thermodynamics. It is through the DOS that (4.2) allows us to make a statistical connection

between harmonic vibrations in the lattice and the thermal free energy. The phonon DOS of

NiAl is shown in Fig. 21 and the calculated values show very good correlation with experi-

ment. While the simulations do not capture all the jagged peaks of a given DOS, they are

able to capture the overall behavior very well. As has been previously stated, (4.2) involves

a numerical integration over the DOS and therefore small discrepancies between calculated

and experimental values have minimal impact on the resulting property predictions. Point

by point precision is not necessary as long as overall averages are similar.
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Fig. 21. Phonon density of states for NiAl. Experimental data is that of Mostoller et al. [99].

In Fig. 22 the LDA is shown to provide a more precise description of the CTE of NiAl

than the GGA. This is noteworthy because the GGA provides the more accurate prediction of

the CTE for Ni, and the LDA does better for Al (see supplemental material at the conclusion

of this chapter). There is no readily apparent way of knowing a priori which approximation
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will yield the best correlation with experiment. At cryogenic temperatures, the slope of the

experimentally obtained CTE diverges significantly from the theoretical results and does

not diminish as rapidly with temperature as the theory suggests. In spite of this anomaly, at

normal operating temperatures the LDA provides a very reasonable prediction of how the

CTE of NiAl evolves with temperature.

The LDA also provides a better description for the CTE of RuAl and IrAl and so the

GGA results are not shown in Fig. 23. While the absolute magnitudes differ between theory

and experimental, the calculations affirm the general slopes of the CTE at temperatures

above 500 K. The experiments show that the CTE of RuAl should be higher than that of

IrAl, a fact affirmed in our predictions.
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Fig. 22. Coefficient of thermal expansion for NiAl. Experimental data is that of
Touloukian [100].

As mentioned previously, the specific heat and entropy are related to the phonon DOS

and the Debye temperature. More specifically, the specific heat is related to a frequency

weighted phonon DOS of the form ν2G(ν). This weighted DOS, along with the original

DOS, the entropy, and the specific heat are shown in Fig. 24. It is interesting that all

three systems demonstrate a band-gap–resulting from the diatomic nature of the B2 unit

cell—in the DOS between about 0.6-0.8 THz, with sharp peaks on either side. Iridium is
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Fig. 23. Coefficient of thermal expansion for RuAl and IrAl. Experimental data for RuAl is
that of Tryon et al. [92] and for IrAl is that of Hosoda et al. [89].

significantly heavier than either Ni or Ru which could be one explanation why the DOS of

IrAl is weighted more to the lower frequencies than the other two. Overall, the DOS for all

the systems are similar, and when included in the integral of (4.2) most of the differences

in DOS will be smoothed out to yield very similar vibrational free energies. This fact,

combined with the close predictions of the Debye temperatures found in Table VII result in

the calculated entropy of the three systems being almost identical. The experimental values

for the entropy of NiAl agree rather well with our calculations as shown in Fig. 24(a), while

the corresponding experimental data sets for RuAl and IrAl are not believed to be currently

available. The second moment of the phonon DOS is related to the Debye temperature

derived from the heat capacity (Table VII). In Fig. 24(d), we present the second-moment

density of states, (ν2g (ν)) calculated for the three B2 intermetallics considered in this work.

Since Ir displays the lowest profile in the weighted density of states we would expect it to

show the corresponding behavior in the specific heat, which is clearly shown as temperature

increases in Fig. 24(c).

One of the important thermodynamic quantities for use in thermodynamic modeling

is the enthalpy of formation. It is a measure of the enthalpy of a system minus the relative
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Fig. 24. The connection between the thermodynamic properties such as entropy and the
phonon DOS. In the upper right we see that the DOS for the various systems are
very similar. This is why the calculated entropies for the systems are so similar. In
the lower right we show a frequency weighted DOS which is used in the calculation
of the specific heat as shown in the lower left.
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enthalpies of its constituents. This quantity provides a measure of the system’s thermody-

namic stability and is very useful in the construction of phase diagrams. The total enthalpy

of the systems of interest is shown in Fig. 25 and shows a similar relationship between the

three systems as demonstrated for the entropy, being that they are almost equal. Again,

correlation between the experiment and calculated values for NiAl is excellent. The en-

thalpy of formation is then plotted in Fig. 26 along with the values of Rzyman for NiAl.

The ground state enthalpy of IrAl (in kJ/g-atom) is calculated to be −691 compared to that

of RuAl at −681. The difference in the enthalpies of formation comes from the fact that

the ground state enthalpy of pure Ir is calculated to be −846 and that of Ru is predicted to

be −880, only an approximate 4% difference. This tendency of Ru to energetically prefer

the pure phase more than Ir does results in a significant difference between the formation

enthalpies of IrAl and RuAl.
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Fig. 25. Relative enthalpy for B2 systems. Experimental data is for NiAl and is taken from
the compilation of Barin [82].

With the thermodynamic quantities thoroughly characterized and showing overall good

agreement with experimental values we proceed with a presentation of the calculation of the

elastic constants of the three B2 systems we have been examining. Fig. 27 demonstrates that

the same basic patterns established for the pure elements carry over to the binary systems.
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Fig. 26. Enthalpy of formation for B2 systems. The NiAl experimental data is from the work
of Rzyman [101].

The LDA has a tendency to overestimate and the GGA underestimate the elastic constants,

thus producing a range wherein the actual Cij lie.

The calculated bulk moduli are shown in Fig. 28 and demonstrate some useful results.

IrAl is shown to be the least compressible, followed by RuAl and then NiAl. This strength

is one of the key reasons why these materials are being considered for many applications.

They all show similar softening with temperature although RuAl seems to drop off the least.

The results for the bulk modulus are used in the calculation of the elastic constants in order

to separate C11 and C12 so the validity of those results depends on a correct prediction of

the bulk modulus.

Finally, the predicted temperature dependence of the single crystal elastic constants of

RuAl and IrAl are presented in Fig. 29. These represent the aggregate of all the methods and

assumptions used in this work. We expect these predictions to be accurate at least at low and

intermediate temperatures but are unsure about how the anharmonic corrections of Oganov

and Wallace will hold at very high temperatures. If reality demonstrates significant depar-

tures from the assumptions used then dynamic—possibly ab initio MD—rather than static

tools would be best suited to analyze and understand the behavior of the elastic constants
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Fig. 27. Elastic constants for NiAl. The LDA (solid lines) and GGA (dotted lines) form
upper and lower limits respectively for the prediction of elastic constants. The
squares represent experimental data of Davenport et al. [102], while circles are the
data from Simmons and Wang [57].

at those temperatures due to their ability to account for anharmonicity exactly [40]. These

property predictions are presented as a theoretical baseline which we hope experimental and

other modeling groups will take into account as they attempt to further characterize these

materials.

E. Summary of Results and Conclusions

In this work we have presented many results of the prediction of finite-temperature thermo-

dynamic and mechanical properties of NiAl, RuAl, IrAl as well as the pure elements which

comprise them. Vibrational contributions to the thermal free energy were accounted for

through the supercell method which was able to produce accurate phonon DOS and impor-

tant constants such as the Debye temperature and Grúneisen constant. Electronic degrees of

freedom were accounted for from the electron density of states and an anharmonic correc-

tion to the free energy was added according to the theory of Oganov. The GGA and LDA

have been implemented in the same procedures and their results comapred and constrasted
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Fig. 28. Calculated bulk moduli for B2 systems within the GGA.
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Fig. 29. ELC of RuAl and IrAl. Solid lines are from LDA calculations, dashed lines from
the GGA.
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with each other showing strengths and weaknesses in each. The key findings of this work

are:

• The predicted thermodynamic properties of the constituent elements agree extremely

well with experiment

• The predicted elastic constants of B2 NiAl match well with the few tabulated values

available

• The GGA and LDA form lower and upper bounds respectively for the prediction of

elastic constants

• There is no clear ’best’ approximation to the exchange correlation energy (GGA or

LDA) for the calculation of all thermodynamic and thermo-mechanical properties. In

future studies both should be considered

• The temperature dependence of the enthalpy and entropy of all three B2 phases are

almost identical - this is due largely to the similarities in their respective Debye

temperatures and phonon DOS

• We have verified the low enthalpy of formation for RuAl and IrAl and presented its

temperature dependence

• The calculated single crystal elastic constants of RuAl and IrAl have been presented

F. Supplemental Materials

Here we include plots of thermodynamic quantities of the pure constituents that did not fit

in the body of the text. Fig. 30 displays specific heat, entropy and relative enthalpy for pure

aluminum. Fig. 31 shows the same data for pure ruthenium and Fig. 32 the same for pure

iridium.
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The CTE for Al is a bit low through most of the temperature region but follows the

appropriate trends for softening with increased temperature. In the cases of Ir and Ru, the

slope of the calculated CTE is significantly less than that of the experimental data throughout

the entire temperature range for which data could be obtained.
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Fig. 30. Thermodynamics of pure Al. Experimental data are taken from Barin [82] for the
Cp, S, and H while CTE data is reported in [39].
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Fig. 31. Thermodynamics of pure Ru. Experimental data for Cp, S, and H are from Barin [82]
while the CTE experimental data is reported in [103].
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Fig. 32. Thermodynamics of pure Ir. Experimental data for Cp, S, and H are from Barin [82]
while the CTE experimental data is taken from the work of Halvorson [104].
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CHAPTER V

AB INITIO MOLECULAR DYNAMICS AND ELASTIC CONSTANTS

As discussed previously, molecular dynamics has been well established as a means for the

calculation of elastic properties of solids [48, 42, 40, 45]. One of the great advantages

to molecular dynamics approaches to the calculation of temperature dependent properties

is that it allows us to account for anharmonic effects [40] without the need of external

corrections like have been employed within the DFT calculations. Traditional molecular

dynamics also allows for simulations of hundred of atoms, allowing long range interactions

to be studied. There are however drawbacks to traditional MD, such as the neglect of

electronic effects and the need to have an adequately parametrized force field available

for the simulation. For systems where force fields are not available it is impossible to

implement traditional MD. Recent developments have lead to the implementation of ab initio

molecular dynamics (AIMD) programs which in essence use DFT in place of interatomic

force fields in a dynamic setting. At each step of the MD simulation, instead of calculating

interatomic forces based on a used defined potential energy function, a quick DFT simulation

is performed and the ions moved and energies updated accordingly.

The purpose of this section is to explore the possibilities of extending the calculation

of elastic constants to ab initio molecular dynamics. There are several trade-offs that must

be made and questions that arise from the differences between traditional and ab initio

MD. This section will address several of those concerns and how they can be discussed.

Currently this is a work in progress with computer code being developed to automate the

AIMD simulations and perform the appropriate post-processing. We begin this section by

laying the groundwork theory and discussing how this could be implemented. We then

discuss some factors to be considered in developing MD simulations that will be suitable

for the extraction of elastic constants. Following this we describe how to post-process the
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AIMD data to get the elastic constants and display some of the challenges that remain to be

overcome to make this process reliable and accurate. Finally we close with details of how

to implement AIMD using VASP.

A. Theory

The determination of elastic constants from MD simulations requires the calculation of three

main contributing terms, the potential energy or Born term, the kinetic energy term, and a

contribution that arises from fluctuations in the microscopic stress tensor,

Cijkl = CB
ijkl + CK

ijkl − Cσ
ijkl. (5.1)

The Born term is directly related to the 0K elastic constants and requires the most care when

adapting classical MD to ab initio MD techniques. The kinetic and stress contributions are

fairly straitforward and will be briefly outlined first.

The kinetic term is calculated from the thermal contributions to the total system energy

by

CK
ijkl =

2nkBT

V
(δikδij + δilδkj) , (5.2)

where n is the number of particles in the system and δij are the conventional Kronecker

delta. The stress fluctuation contribution is calculated by calculating ensemble averages in

the fluctuations of the microscopic stress tensor,

Cσ
ijkl =

V

kBT
(〈σijσkl〉 − 〈σij〉〈σkl〉) , (5.3)

where 〈〉 denote the averages over time. This term is the reason for setting ISIF = 2 in

the INCAR file, so that it will write the stress tensor at each time step. The two terms can

easily be calculated from the trajectory information that VASP writes to the OUTCAR and

vasprun.xml files.
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The calculation of the Born term is significantly more difficult due to the fact that it

depends on second derivatives of the potential energy with respect to perturbations in various

directions.

CB
ijkl =

1

4

(
ĈB
ijkl + ĈB

jikl + ĈB
ijlk + ĈB

jilk

)
, (5.4)

with

ĈB
ijkl =

1

V

N∑
m=1

N∑
n=1

〈rmj rnl
∂2U

∂rnk∂r
m
i

〉+ δik〈σvjl〉, (5.5)

where σv is the symmetric virial tensor,

σvjl =
−1

2V

N∑
m=1

[
rmi

∂U

∂rmj
+ rmj

∂U

∂rmi

]
. (5.6)

The equation (5.4) is used to symmetrize the Born term by taking the average of each

possible combination of i, j, k, l.

In classical MD, the second derivative of the potential energy can be calculated analyt-

ically from the parametrized potential function and programmed into the simulation. One

of the primary goals in using ab initio MD is to free ourselves from the constraint of needing

such a potential energy function. The key then to the calculation of the Born term is to

find a numerical approach to calculate the necessary derivatives. Originally we attempted

to calculate the second derivative through finite differences in the forces and positions as

reported in the MD trajectory data. This seemed like a logical choice until we realized that

every time an atom changes direction, ∂r → 0 and therefore a ∂f/∂r would have a zero

denominator. This results in extreme numerical spikes in the data making any averaging

extremely unreliable. Also since ∂F/∂r must be taken while all other atoms are stationary

this approach is mathematically incorrect and another method for developing the partial

derivatives numerically is necessary.

Based on the work of Yoshimoto et al. [105] we have developed an alternate method

for the calculation of the Born term numerically. Each second derivative must be calculated
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independently using finite differences. In the case of an N particle system each atom has

to be moved a tiny distance in each of the x, y, z directions and the resulting changes in

interatomic forces calculated in each direction for each atom. The terms (∂2U)/(∂rnk∂
m
i )

can be summarized in a Hessian matrix which if each of the x, y, z directions is taken into

account for the i, k results in a 3N x 3N matrix. Conveniently VASP has a built in routine to

calculate the Hessian of a given system. Therefore to calculate the Born term using a finite

difference Hessian we must extract the positions of the atoms at several time steps from the

MD run, calculate the Hessian based on those positions and then calculate the Born term

from the Hessian. The calculation of the Hessian involves 3m ∗N static calculations where

m is the number of finite difference steps taken for each atom in each direction.

In order to limit the computational cost of calculating 3m ∗N static calculations over

hundreds or thousands of timesteps it is recommended to implement a convergence algorithm

such as:

1. Extract instantaneous positions of random timesteps from the MD trajectory

2. Calculate the Hessian matrix based on the instantaneous positions of one timestep

3. Calculate the Born contribution to the ELC from the positions and the Hessian

4. Check for convergence between this step and the running average

5. Repeat if convergence criteria not met

to calculate the Born term. This algorithm can also be written to use multiple threads so

that several timesteps can be calculated concurrently thus reducing the real time wait for

convergence on a multi-core CPU.
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B. Moleculary Dynamics Methodology

The general procedure for developing an MD simulation which is suitable for elastic constant

calculations from statistical fluctuation formula is outlined as follows.

1. Create the desired MD cell and relax it at 0K to get the ions in their proper positions

2. Thermalize the system by slowly bringing it up to the desired temperature

3. Equilibrating the pressure by iterating through possible lattice parameters to converge

on a state of zero pressure

4. Run an extended NVE simulation

5. Extract ELC terms from trajectory data

The length of the simulation needs to be determined by how the three independent terms

mentioned previously converge over time. Ray [45] and others [42] have shown that the

Born and kinetic terms converge rapidly, generally within 500 to 1000 timesteps. This is

advantageous since the calculation of the Born term is computationally expensive. Ray has

shown that the limiting factor for how long a simulation should be run is how long it takes

for the stress fluctuation term to converge, typically on the order of 25000 steps or more.

Without running such test with AIMD it is impossible to say for sure how long it will take

for the stress term to converge so initially we would expect similar convergence to that of

the classical MD until this could be tested.

There are several factors that should be taken into account in validating the quality

of an MD simulation and therefore its useability to ELC calculations. The first is that the

simulation obeyed the constraints set upon it. In the case of the current problem we are

looking at fluctuations during an NVE run where number of particles, volume, and energy

are all conserved throughout the simulation. Number of particles and volume are easy
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to maintain constant while energy is a bit more challenging. Throughout the course of a

simulation, numerical errors begin to compound one upon another and produce a sort of

’drift’ in the total energy of the system. In order to maintain the integrity of the simulation

it is important that this drift be a little as possible. Fig. 33 shows an example of energy drift

during a 5000 step NVE MD run in VASP. Since the drift is so small we can assume that

0 1000 2000 3000 4000 5000
-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000
-1.001221e2

Fig. 33. Energy drift for a 5000 step AIMD run. This shows the magnitude of the fluctuations.
The zero is actually at approximately -100eV meaning the drift in total energy is on
the order of 5E-4 %.

the run is satisfactorily an NVE simulation. In order to maintain constant total energy, if

the kinetic energy decreases, the potential energy must increase the same amount. Fig. 34

demonstrates the kinetic and potential energies over the same run. It is also important to

check how the pressure and temperature fluctuate over time during the MD run as shown in

Fig. 35 to ensure that the system is well behaved and truly at a state of relative equilibrium.

In this case we can see that the actual mean of the temperature over time was approximately

90 K instead of the desired 100 K. Once the system is truly converged to equilibrium pressure

and temperature and the energy is shown to be conserved over the MD simulation then it

is time to process the trajectory data and run the calculations to extract the various elastic

constants.
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Fig. 34. Kinetic and potential energy fluctuations over a 5000 step MD simulation.
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Fig. 35. Pressure and temperature fluctuations over a 10000 step MD simulation. The pres-
sure plot has been normalized around the mean to show that for this run, the mag-
nitude of the pressure fluctuations was normally less than ± 4 GPA.
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C. Results to Date

So far our efforts have been focused on the calculation of the Born term according to the

model discussed previously. While the process should be fairly straightforward there are

several factors which influence the numerical methods used and hence the accuracy of the

final product. For now we focus on the first term of (5.5) and omit the term containing the

virial tensor which will have a relatively small effect on the total elastic constants.

The term we are calculating represents the static elastic constants at 0 K and theoretically

should match up well with results obtained from other methods of calculating the elastic

constants at the ground state. As previously mentioned, at the heart of the Born term is

∂2U/∂rnk∂r
m
i which can be summarized in the Hessian matrix of the potential energy of the

system. It is believed that since VASP has a built in function for calculating the Hessian,

this term should be straightforward to calculate. The Hessian is formed by taking each atom

individually and moving it a finite distance in each direction and measuring the change in the

potential energy of the system. Unfortunately, the numerical methods used in calculating

finite differences in the potential energy are extremely erratic and we have not yet been able

to find suitable parameters for accurate Hessian matrix calculations.

The results of our most recent test are found in Table VIII. Ideally C11 should be

about 110 GPa and C44 should be about 35 GPa. C12 has been omitted since in all the runs

it is coming out to be effectively 0 when it should demonstrate a value of approximately

60-65 GPa. This is a cause of great concern yet it is currently unknown why this shear

mode is completely absent from the Hessian calculations. The predictions of C44 are

constant throughout, mostly independent of the parameters used to calculate the Hessian.

Unfortunately, the value predicted is exactly twice what we would expect it to be. The σC11

column is a measure of the standard deviation of C11, C22, and C33. Due to the symmetry

of a cubic system these three terms should be equal and therefore it is important that the
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Table VIII. Born term results.

Finite
∆r

kpoint
C11 σC11 C44

Displacements mesh

2 0.015 1x1x1 348 24.55 71

4 0.015 1x1x1 168 3.34 71

2 0.015 2x2x2 175 1.04 72

2 0.015 3x3x3 387 1.74 68

2 0.010 1x1x1 382 4.06 71

2 0.030 1x1x1 223 2.05 71

2 0.050 1x1x1 249 1.67 72

4 0.010 1x1x1 308 9.7 71

4 0.050 1x1x1 263 1.06 72

calculations yield terms with a very small standard deviation. The first run yields a very high

standard deviation while just about any other trial yields significantly better results. The

difficulty comes in when trying to develop a systematic way of finding convergence among

the terms. It is clear that increasing the number of k-points to a 2x2x2 mesh drastically

reduced the variance among these three terms, but when the mesh was refined further, the

variance grew. Also, both decreasing and increasing the ∆r reduced the σC11.

When looking at the magnitude of C11 there are huge differences depending on the

parameters used in Table VIII, again with no apparent pattern. First to note is that the

calculated magnitudes all overestimate C11 drastically from about 50% over the expected

value to over 250%. If the k-point mesh is increased to a 2x2x2 the value of C11 drops to

about half of the value at a 1x1x1 mesh, and if the mesh is further refined to a 3x3x3, the

value shoots up to more than the value at a 1x1x1 mesh. As the number of displacements and
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∆r are varied C11 fluctates a lot and it is impossible to determine the optimal parameters

to be used from the data available.

D. Ab initio Molecular Dynamics with VASP

Ab initio MD is a built in feature of VASP, all that is required of the user is to put the ap-

propriate parameters in the INCAR file and the system will do the rest. The VASP manual

provides examples and explanations of the various parameters and the reader is referred to

that document for details. A sample INCAR file is included below and is commented in

italics to show what the various keywords do.

SYSTEM = MD

Things you should never have to change

IALGO = 48

LREAL = A

NELMIN = 4

BMIX = 2.0

MAXMIX = 50

ISYM = 0

NBLOCK = 1

KBLOCK = 1

IBRION = 0 This is the command which tells VASP to run MD

Things you may want to change

ISIF = 2 Calculate the stress tensor - needed for ELC calcs.

LWAVE = .FALSE. Same as for static VASP

LCHARG = .FALSE.
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TEBEG = 200 The temperature at the beginning of the MD run

TEEND = 200 The temperature at the end of the MD run

NSW = 50000 The number of timesteps

POTIM = 1.0 The timestep in fs

SMASS = -3 Which type of MD: -3=NVE, -1=NVT or T-scaling

The first section of the INCAR file contains basic recommendations from the VASP man-

ual. The details of which will not be discussed here. The second section demonstrates the

few commands that need to be changed depending on the simulation desired. For dynamic

problems not requiring the instantaneous stress tensor omitting the ISIF flag would be rec-

ommended. The program would then revert to the default and save computation time. The

LWAVE and LCHARG could be useful if repetitive calculations are needed, but in our case

they are unnecessary. The last four parameters in the model INCAR file are self explanatory

and are the ones that will get changed the most often.

In order to calculate the Hessian Matrix in VASP the IBRION, POTIM AND NFREE

parameters are key. Below is a sample INCAR file for automating the calculation of the

Hessian matrix.

SYSTEM = Hessian

NSW = 1

ISTART = 1

IBRION = 5 This is the command to calculate the Hessian

POTIM = 0.015 ∆r

NFREE = 2 Number of finite displacements

LREAL = F

ISYM = 0 For some reason, the symmetry must be turned off or the

ELC calculation are not symmetric

This INCAR file will automatically calculate the Hessian using 2 displacements of each
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atom at ±∆r in each direction for each atom. Once all the finite displacement calculations

are done the results are stored in the OUTCAR file.

E. Future Work

The methodology for the calculation of the elastic constants from ab initio MD has been laid

out and several programs have been developed to automate calculations and post-process

data. At this point, the greatest challenge to solve center around the calculation of the Born

term. The Hessian as given by VASP should be sufficient to calculate this term but so

far we have been unable to find a systematic method for doing so accurately. Also, C12

is completely ignored, a fact which must be addressed by further looking at the Hessian

and how it is calculated. An alternate method for calculating the Born term could involve

the calculation of strain energies at several random snapshots of the MD simulation. This

method is similar to that used for static elastic constant calculations, with the advantage

of sampling the energies of the atoms away from their equilibrium positions. Preliminary

tests show good convergence for this method but the magnitude of the C11-C12 modulus

is overestimated. Further testing and development of this technique could make the finite

displacement technique unnecessary.

Once the problems with the Born term are solved the next step would be to develop

a systematic way of thermalizing and equilibrating pressure on a system and then testing

for convergence of the stress fluctuation term to determine how long the simulations should

be run. At that point everything should be in place to run MD simulations at several tem-

peratures and extract the elastic constants and their temperature dependence. The theories

discussed are sound, but so far the numerical methods are lacking in their ability to provide

an accurate representation of the elastic behavior of a cubic system at this point.
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CHAPTER VI

SOFTWARE DEVELOPED

Throughout the course of this work the author has performed countless DFT calculations

on the CAT supercomputing cluster of the Department of Chemical Engineering. The

repetitive and time-consuming nature of the calculations lead to the development of a set of

Python based computer codes to automate this work. There are two main advantages that

the automation provided by the developed software provides for the user, less manual time

overseeing and managing calculations and second absolute repeatability and elimination of

human error. The DFT calculations are performed in a series of steps, each subsequent step

relying on the previous. Often there is a lot of time spent waiting and watching for a job

to finish. These scripts allow the user to set up two input files, run a single command and

walk away until the entire process is done.

A. Job Preparation and Batch Management

Therun_vasp.py program is the main program for running the several VASP calculations

needed to predict thermodynamic and thermo-mechanical properties. At the command line

it can be called with one of four options:

• -ssc

• -t

• -c11

• -c44

The -ssc command assumes that the current working directory contains the 4 necessary

VASP input files (POSCAR, POTCAR, INCAR, KPOINTS). The program performs an
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initial relxation calculation, monitoring the progress of the job in the cluster and upon

completion of the relaxation calculation it changes the INCAR parameters to reflect those

of a static self-consistent calculation and re-submits the job and monitors until completion.

While this is a fairly simple function in comparison to the others that will be discussed, this

script performs an oft-needed function while providing automation between the relaxation

and static calculations and providing for exact repeatability.

In order to calculate therodynamic and thermo-mechanical properties using VASP we

must first obtain the free energy surface in volume/temperature space. Since a given VASP

run only yields a single point on that surface, there is an obvious need for several DFT

calculations which span both the volume and temperature dimensions. The-t option and its

methods completely automate the DFT calculations needed to construct this surface through

the supercell approach. There is a very useful tool called the Automated Theoretic Alloy

Toolkit or ATAT which was written to partially automate the quasi-harmonic lattice dynamics

calculations. ATAT has functions which create the necessary supercells and perturbations

needed to calculate force constants and also post-processes the DFT calculations to obtain

the phonon DOS and thermal free energy. The development a full quasi-harmonic model

using ATAT is a systematic yet intricate process which requires significant user interference

and attention. The purpose of the run_vasp.py script and the -t option is to automate

not only each step but the entire process of the quasi-harmonic lattice dynamics. The old

process of using ATAT from the user perspective was:

1. Submit an initial relaxation calculation of the basic structure in order to relax the

lattice and move the ions in their ground state positions.

2. Wait for relaxtion calculation to finish.

3. Change the INCAR parameters to reflect a static self-consistent calculation (ssc) to

ensure the ground state energy has been reached and then submit the job.
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4. Wait for ssc calculation to finish.

5. Call the fitfc command from ATAT which creates the necessary quasi-harmonic vol-

ume directories with the necessary VASP input files.

6. Submit each volume directory calculation for a relaxation calculation (maintaining

constant volume).

7. Wait for the volume relaxation calculations to finish.

8. Submit each volume directory for a ssc calculation.

9. Wait for volume SSC calculations to finish.

10. Call the fitfc command of ATAT again to create the necessary supercells for force

constant calculations.

11. Submit the supercell calculations.

12. Wait for supercell calculations to finish.

13. Once the supercell calculations are done call the fitfc command one last time to perform

post-processing and calculate the force constants, thermal free energy, phonon DOS

etc.

At each DFT step the VASP calculations are typically done on a massively parallel system

managed by some sort of batch system. Most often each job will have to be submitted to a

queue, wait in queue until the requested resources are available, and then execute. This can

slow down the user since even simple calculations that will only take a few minutes such as

a relaxation calculation of a simple system often have to wait in queue for hours, with the

operator constantly checking back.
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As previously stated, the purpose of the run_vasp.py -t command is to automate

the entire process outlined above so the user can simply enter one command and wait for

the entire series of jobs to run automatically. In order to run the program the user must

supply a vasp.in file as outlined below and optionally may provide an ELCparams.in file.

The ELCparams.in file is a text file containing any changes to the default parameters (which

will be outlined shortly). The vasp.in file is processed by the script ezvasp which is

included as part of ATAT. It contains the INCAR parameters for a simple relaxation run

and a modified version of the POSCAR section as shown below. The ezvasp command

creates the four VASP input files (INCAR, POSCAR, KPOINTS, POTCAR) based on the

vasp.in file. Included below is a sample vasp.in file which can be processed with the

ezvasp command from the ATAT package.

[INCAR]

SYSTEM = FCC-Al

NEDOS = 1000

NELMIN = 8

ENCUT = 350

EDIFF = 1e-6

ISTART = 0

IBRION = 2

ISIF = 3

PREC = Accurate

NSW = 50

KSCHEME = Monkhorst-Pack

KPPRA = 10000

DOGGA
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[POSCAR]

FCC-Al

1.0000000000

0.0000000000 2.0125000000 2.0125000000

2.0125000000 0.0000000000 2.0125000000

2.0125000000 2.0125000000 0.0000000000

D

0.0000000000 0.0000000000 0.0000000000 Al

There are two main sections of the vasp.in file, the INCAR and POSCAR sections which

essentially are split up and formatted correctly to make the corresponding VASP input files.

The INCAR section also has a few lines (in this case the last three) which are not VASP input

parameters but rather serve as the necessary inputs for ezvasp to create the KPOINTS file

and select the appropriate pseudopotential. Essentially they specify the type and density of

the k-point mesh for Brioullioun zone sampling and the DOGGA command indicates that the

GGA potentials should be used rather than the LDA. For further details on these parameters

the reader is referred to the ATAT manual [73].

The ELCparams.in file is optional and gives the user to change any of the input pa-

rameters for the run_vasp script. If the file is absent all default values are used, while

if it is present only the parameters which the user wishes to change from the defaults must

be included, the others are automatically set to the default values. A listing of possible

parameters with their defaults is given in Table IX.

With the vasp.in and optionally the ELCparams.in files in place the user must simply

enter the command run_vasp.py -t at which point the user may walk away. The

entire process to obtain a quasi-harmonic model of the system is automated and free of any

need for user interaction. The cluster calculations are prepared, submitted and monitored

automatically as shown in Fig. 36.
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Table IX. Possible parameters and their default values for ELCparams.in.
Parameter Default Value Explanation

numberofposvolumes 5 The number of positive volumes to be included in the
quasi-harmonic approximation (including volume 0)

numberofnegvolumes 3 The number of negative volumes to be included in the
quasi-harmonic approximation (including volume -0)

maxnegvolume -0.02 The maximum negative volume to be considered in the
QH model

maxposvolume 0.04 The maximum positive volume to be considered in the
QH model

minVCstrain 0 The minimum volume conserving strain to be used in
the calculation of the ELC

maxVCstrain 0.04 The maximim volume conserving strain to be used in
the calculation of the ELC

numVCstrains 5 The total number of volume conserving strains to be
considered for ELC calculations

er 8.0 The er value to be used in the fitfc command (deter-
mines the size of the supercell to be used)

dr 0.05 The dr value to be used in the fitfc command
fr 4.0 The fr value to be used in the fitfc command

maxtemp 2000 The maximum temperature to consider when post-
processing the data

mintemp 1.00E-005 The minimum temperature to consider when post-
processing the data (a value of 0 will be over-ridden
by this value since it leads to numerical error)

dTemp 1 The temperature step size for post processing
pertnodes 4 The number of supercomputer nodes to be used for a

supercell calculation
PertPollTime 300 How often (in seconds) the queue should be checked

for completed jobs during supercell calculations
relaxnodes 1 The number of supercomputer nodes to be used for

relaxation and ssc calculations
RelaxPollTime 5 How often (in seconds) the queue should be checked

for completed jobs during relaxation or ssc calculations
QueueToUse MX1 The name of the cluster queue to be used

NumAtomsinSC 32 The number of atoms to have in the supercell (interacts
with the er command above) âŁ“ this feature is still in
testing

StrainThermo False Should the thermal free energy be calculated for each
of the volume conserving strains of an ELC calculation
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Fig. 36. Procedure for submission and monitoring jobs automatically.
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One important feature of the run_vasp.py script is automatic error checking and

the ability to resume work at the same step an error occurs. Often there are errors in

the cluster computer or the user will kill jobs for some reason and one or more of the

calculations anywhere in the process is terminated. Should this happen, the user must

simply re-invoke the run_vasp.py -t command and the program will pick up at the

step the error occured. As an example, the master node of the cluster could crash once

two of seven supercell calculations were done and the other five were still in queue. Upon

calling the run_vasp.py -t command the script would sense that all previous steps had

been successfully completed, and that two of the supercell jobs were done. It would then

re-submit the remaining five jobs and the user would be right back on track automatically.

The flow of this automatic error checking is shown in Fig. 37.

Another key advantage of automating this process is that it eliminates human error

when repeated situations are needed. When the process is done manually, there exists the

potential of the user inadvertently entering the wrong parameters at a given step of the

process. For example, the -er parameter for the fitfc command determines the size of

the supercell to be used. In a manual process, this or any other parameter could accidentally

be entered the incorrectly and the error go unnoticed until much later after hours of time

has been wasted.

The -c11 option for the run_vasp.py command performs a similar function to that

of ther -t option but instead handles the pre-processing and job management necessary for

the calculation of the finite temperature C11 − C12 for a cubic system. The first step of

the -c11 option is to ensure that a full quasi-harmonic model is complete according to the

parameters in the ELCparams.in file. If the thermodynamic model is not present or any

part of it is missing the thermodynamic routine will be called first. Once this has been done

the script performs the following sequence of tasks.

• Within each volume directory construct several strain directories
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Initial Relaxation

Initial SSC

Set up volumes

Relax volumes

Volume SSC

Post-process
volume SSC

Set up supercell
directories

Run supercell
calculations

Post-process
supercells

run VASP

run VASP

run VASP

run VASP

run VASP

NSW in INCAR,
 E0 in OSZICAR,

OSZICAR older than INCAR

INCAR in
each volume

E0 in OSZICAR in 
each volume

Same as Initial
SSC check in each

volume dir

 str_relax.out
and felec in each

volume

INCAR in
each SC dir

Same as Initial
SSC check in each

SC dir

 str_relax.out in
each SC dir

extract_vasp

run felec

run fitfc

run fitfc

Check for E0
in OSZICAR

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

Y

DONE

Fig. 37. Logical flow of run_vasp.py -t.
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• In each strain directory change the POSCAR file to represent an appropriately strained

lattice

• Copy the other necessary VASP input files into each strain directory

• Create a queue file for each calculation and submit each job to the cluster

• Watch the cluster for job completion

These tasks are significantly easier than those needed for the thermodynamic model but

there are a lot of them. In a default run of run_vasp.py -c11 there are seven volume

directories with 5 strains in each volume for a total of 35 strain calculations. Without the

script the user would have to manually set up each strain directory and scale the lattice

vectors 28 times. The -c44 option provides the same functionality as the -c11 flag but

creates different directories with a different lattice strain that is needed for the calculation

of C44. The overall flow of the various run_vasp.py options is depicted in Fig. 38.

B. Post Processing

Three main programs were developed for the extraction of thermodynamic properties and

elastic constants from DFT calculations, Thermodynamics.py, ELC.py, and C44.py.

Thermodynamics.pywas written completely by Dr. Raymundo Arroyave and the other

two were written by the author of the current work. Each depends on a complete set of

calculations as output by the corresponding option of the run_vasp.py program. The

function of these programs is to collect the necessary data from the DFT calculations and

perform the mathematical manipulations following established formulas to calculate the

properties of interest. All three programs rely on the same ELCparams.in file that was

used with the run_vasp.py command ans whose parameters are outlined in the previous

section. These parameters are used to direct the calculations as far as what the temperature
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Fig. 38. Graphical representation of the run_vasp.py options.
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step should be, what volume and strain directories should be included etc. Provided the

user has a complete set of calculations in the current working directory the appropriate

command must simply be called, the program will run and eventually the corresponding

output files will be written. Most output files contain two or more columns of data with

the first always representing the temperature and the other colums representing property

values at that temperature. For example, the file Entropy.dat contains six columns.

The first column is temperature and the others represent the total system entropy under

various approximations (the last column includes all assumptions including electronic and

anharmonic corrections to the free energy and is the one typically used). From these files

the various plots can be made and relationships between properties established. For details

on the exact workings of the code the reader is referred to the formulas cited throughout

this work and the complete listing of documented source code which is contained in the

appendix.
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CHAPTER VII

SUMMARY

The objective of this work was to develop a procedure to calculate several themodynamic

and thermo-mechanical properties of NiAl, RuAl and IrAl from first principles calculations.

After a review of the basic theories of density functional theory, lattice dynamics, the har-

monic and quasi-harmonic approximations and classical molecular dynamics we presented

two journal articles detailing the details of our work.

In the first paper we presented a method for the prediction of thermodynamic and

elastic properties of pure cubic metals at finite temperatures. The method is based on

density functional theory and quasi-harmonic lattice dynamics to develop a free energy

surface in volume/temperature space. From this surface we are able to extract thermal

expansion and associated thermodynamic properties such as enthalpy, entropy and specific

heat based on local slopes of the free energy surface. Effects from vibrational and electronic

degrees of freedom were accounted for and an estimation of intrinsic anharmonicity was

included as an addition to the free energy. Single crystal elastic constants were calculated

through strain energy relations and fit to thermal expansion data to obtain their temperature

dependence. We presented calculated results for aluminum and tungsten and showed the

correlation with experiment to be good. The approximations made break down for tungsten

at high temperatures and therefore our calculations are not reliable over approximately 60%

of the melting point.

In the second paper we showed that the method developed for aluminum and tungsten

applies to the B2 cubic phases of NiAl, RuAl and IrAl as well and that the same properties

could be predicted for these binary intermetallics as for their constituents. In the prediction

of these properties we followed the exact same procedures as for the unary systems and

proved that the method is easily extended to these binary phases. The experimental data
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for RuAl and IrAl is sparse but where available there was reasonable correlation between

the calculations and experiments. Future work in this area should include the extension of

the elastic constant calculations to systems with tetragonal and hexagonal systems. Also,

magnetic degress of freedom and their effect on the total free energy of the system could

be accounted for. Further study needs to be done to quantify and accurately parametrize

intrinsic anharmonicity at high temperatures.

We also examined the possibility of implementing ab initio molecular dynamics for the

prediction of elastic constants. This is still an emerging field with much work remaining.

So far we have established basic procedures and algorithms for the numerical calculation

of the Born term. Many things need to be investigates such as the best way to thermalize

and equlibriate the pressure of an AIMD cell as well as to test how long it takes for the

stress fluctuation term to converge. The limited results we have produces thus far have

been able to produce ground state elastic constants of the right order of magnitude but are

still very far from accurate. There is currently no clear choice of optimal parameters to

use in the calculation of the Born term from finite displacements and this is an issue which

must be resolved before this work can continue. It is hoped that with further study and

discussion new methods will be implemented to overcome these difficulties. It is also of

great importance to discover why the Born term as calculated from the Hessian matrix yields

effectively 0 for C12. This is currently a mystery needing analysis and testing.

Finally, we presented an explanation of the various computer codes that were developed

for the preparation, management and processing of the various DFT calculations. We used

Python to automate the tasks wherever possible and provide a transparent user interface

between VASP, ATAT, GridEngine, and our post-processing routines. The development of

these codes is one of the highlights of this work since it allows complete repeateability with

extremely little user interaction. Currently there are plans to release this code into the public

domain for use and collaboration with other research groups. Hopefully more functionality
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will be added and perhaps even a graphical user interface for preparing and monitoring the

jobs as well as vizulization of results.

The project objectives have been met satisfactorily by developing a method for the

prediction of elastic constants from first principles calculations. This is a small but significant

step in both the advancement of multi-scale modeling of materials and the development of

the next generation of ultra-high temperature materials.
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APPENDIX A

SOURCE CODE

Thermodynamics.py

#! / usr /bin /env python
"""
Methods to obtain thermodynamics properties
"""

__author__ = "Raymundo Arroyave (raymundo@fastmail .fm)"
__version__ = "0.2$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

from numpy import zeros , array , min
import CollectData
from CollectData import ∗
from EOS import FitEOS, GetExtrapolatedEnergies , FitLinear
from Fvib import ∗
from scipy import ∗
from NumericalMethods import ∗
import cPickle
from f i l eu t i l s import ∗
import time
import sys
import pylab
import os
import Constants
import sys

class ThermodynamicFunctions:

def __init__( self ,Temperatures ,FreeEnergy , Units="eV/atom" ) :
self .Temperatures = array(Temperatures)
i f Units=="J /mol" :

self .FreeEnergy = array(FreeEnergy)∗1000.
else :

self .FreeEnergy = array(FreeEnergy)
self .Entropy = array( self . CalculateEntropy ())
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self .HeatCapacity = array( self . CalculateHeatCapacity ())
self .Enthalpy = array( self . CalculateEnthalpy ())
self . RelativeEnthalpy = array( self . CalculateRelativeEnthalpy ())
i f Units=="J /mol" :

self .Enthalpy = self .Enthalpy/1000.
self . RelativeEnthalpy = self . RelativeEnthalpy/1000.

self .NormalizedperAtom = False
self .NumberofAtoms = 1.
self . Units = Units
self .CalculateDebyeTemperature(5. ,300.)
self . CalculatePropertiesat298K()

def CalculateEntropy( self ) :
S =−fprime( self .Temperatures , self .FreeEnergy)
S = S−S[0]
return S

def CalculateEnthalpy( self ) :
return self .FreeEnergy+self .Temperatures∗self .Entropy

def CalculateRelativeEnthalpy( self ) :
tck = interpolate . splrep ( self .Temperatures , self .Enthalpy ,k=3)
return self .Enthalpy−interpolate . splev(298.15,tck)

def CalculateHeatCapacity( self ) :
return fprime( self .Temperatures , self .Entropy)∗ self .Temperatures

def CalculateDebyeTemperature( self ,Tmin,Tmax) :
Temp=linspace (Tmin,Tmax,30)
self .DebyeTemperature = zeros (( len(Temp) ,2) ,dtype=float )
self .DebyeTemperature[: ,0] = Temp
tck=interpolate . splrep ( self .Temperatures , self .HeatCapacity , s=0.0,k=3)
Cpj = interpolate . splev(Temp, tck)
for i in range( len(Cpj) ) :

self .DebyeTemperature[ i ,1] = get_DebyeTemperature(Temp[ i ] ,
Cpj[ i ] ,300)

tck=interpolate . splrep ( self .DebyeTemperature[: ,0] ,
self .DebyeTemperature[: ,1] ,k=3,s=0.1)

self .DebyeTemperature[: ,1] = \
interpolate . splev( self .DebyeTemperature[: ,0] , tck)

def CalculatePropertiesat298K( self ) :
tck=interpolate . splrep ( self .Temperatures , self .Entropy ,k=3)
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self .Entropy_at_298K = interpolate . splev(298.15,tck)
tck=interpolate . splrep ( self .Temperatures , self .HeatCapacity ,k=3)
self .HeatCapacity_at_298K = interpolate . splev(298.15,tck)

def NormalizeperAtom( self ,NumberofAtoms) :
i f self .NormalizedperAtom == False :

self .NormalizedperAtom = True
self .NumberofAtoms = NumberofAtoms
self .FreeEnergy = self .FreeEnergy/NumberofAtoms
self .Entropy = self .Entropy/NumberofAtoms
self .Enthalpy = self .Enthalpy/NumberofAtoms
self . RelativeEnthalpy = self . RelativeEnthalpy /NumberofAtoms
self .HeatCapacity = self .HeatCapacity /NumberofAtoms
self .Entropy_at_298K = self .Entropy_at_298K/NumberofAtoms
self .HeatCapacity_at_298K = \

self .HeatCapacity_at_298K/NumberofAtoms

def eV2Joules( self ) :
i f self . Units=="eV/atom" :

self . Units = "J /mol"
#Note: Enthalpies will be in kJ /mol while entropies and
#specific heats will be in J/mol/K
ConversionFactor = 1.60217733e−19∗6.0221367e23
self .FreeEnergy = self .FreeEnergy∗ConversionFactor/1000.
self .Entropy = self .Entropy∗ConversionFactor
self .Entropy_at_298K = self .Entropy_at_298K∗ConversionFactor
self .Enthalpy = self .Enthalpy∗ConversionFactor/1000.
self . RelativeEnthalpy = \

self . RelativeEnthalpy∗ConversionFactor/1000.
self .HeatCapacity = self .HeatCapacity∗ConversionFactor
self .HeatCapacity_at_298K = self .HeatCapacity_at_298K ∗ \

ConversionFactor

def Joules2eV( self ) :
i f self . Units=="J /mol" :

self . Units = "eV/atom"
ConversionFactor = 1./(1.60217733e−19∗6.0221367e23)
self .FreeEnergy = self .FreeEnergy∗ConversionFactor∗1000.
self .Entropy = self .Entropy∗ConversionFactor
self .Entropy_at_298K = self .Entropy_at_298K∗ConversionFactor
self .Enthalpy = self .Enthalpy∗ConversionFactor∗1000.
self . RelativeEnthalpy = \

self . RelativeEnthalpy∗ConversionFactor∗1000.
self .HeatCapacity = self .HeatCapacity∗ConversionFactor
self .HeatCapacity_at_298K = self .HeatCapacity_at_298K ∗ \
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ConversionFactor

class BulkThermodynamicProperties:

def __init__( self ,Volumes, Temperatures , Energies , VibFreeEnergies ,
VTheta, DebyeMomentData, Units="eV/atom" ,
Extrapolation="Poly" ,
Anharmonicity=False ,∗∗kwargs) :

self .Temperatures = array(Temperatures)
self .Volumes = array(Volumes)
self . Energies = array(Energies)
self .VibFreeEnergies = array(VibFreeEnergies)
i f ’EleFreeEnergies ’ in kwargs:

self . EleFreeEnergies = array(kwargs[ ’EleFreeEnergies ’ ])
self .VTheta = VTheta
self .DebyeMomentData = DebyeMomentData
self . Extrapolation = Extrapolation
# Extrapolates to other volumes using a polynomial linear function or
# interpolates using a spline . Note that splines cannot be used for
# extrapolations .
self . ExtrapolationFactor = 0.1
self .NormalizedperAtom = False
self .NumberofAtoms = CountAtoms()
self . Units = Units
self .FittingEOS = "Linear"
i f Anharmonicity == True:

self .Anharmonicity=True
i f ’AnharmonicityCorrection’ in kwargs:

i f kwargs[ ’AnharmonicityCorrection’]=="Wu" :
self . AnharmonicityCorrection="Wu"
i f ’AnharmonicityFactor’ in kwargs:

self .AnharmonicityFactor=kwargs[ ’AnharmonicityFactor’ ]
else :

print ’No Anharmonicity Factor!!!−−using Wallace\
Approach Instead ’

self . AnharmonicityCorrection="Wallace"
el i f kwargs[ ’AnharmonicityCorrection’]=="Wallace" :

self . AnharmonicityCorrection="Wallace"
self .AVibFreeEnergies=zeros(shape( self .VibFreeEnergies))
self . vdos_all=kwargs[ ’vdos_all ’ ]
self .CalculateAnharmonicFreeEnergy()

else :
print "No Anharmonicity Method Provided−−−Ignoring \
Anharmonicity"

self .Anharmonicity=False
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else :
self .Anharmonicity=False

self .Get_0K_Properties()

i f ’EleFreeEnergies ’ in kwargs:
self . Get_FiniteTemperatureProperties(EleFreeEnergies =

self . EleFreeEnergies)
else :

self . Get_FiniteTemperatureProperties ()
self . Fitting_chi_squared = \

self . Fitting_chi_squared / float ( len( self .Temperatures))
print ’Average Fitting Correlation : %f12.6 ’%\

(1.−abs( self . Fitting_chi_squared ))
self . CalculateGruneissenParameter ()
self . CalculateVibrationalParametersat0K()
self . CalculatePropertiesat298K()

def Get_0K_Properties( self ) :
energies=array( self . Energies ) .T+self .VibFreeEnergies[0 ,:]
(FittingResults ,params) = \

FitEOS( self .Volumes, energies .T,EOS=self .FittingEOS)
self . FittingParameters = params
self .V0 = FittingResults ["volume"]
self .E0 = FittingResults ["energy"]
self .B0 = FittingResults ["bulk"]
self .dB0 = FittingResults ["dB"]
self . Fitting_chi_squared = FittingResults ["chi−squared"]
return

def Get_FiniteTemperatureProperties( self ,∗∗kwargs) :
self .VT = array(zeros (( len( self .Temperatures) ,1)))
self .FT = array(zeros (( len( self .Temperatures) ,1)))
#Quasi−harmonic Free Energy
self .HFT = array(zeros (( len( self .Temperatures) ,1)))
# Harmonic Free Energy (evaluated at V0)
self .BT = array(zeros (( len( self .Temperatures) ,1)))
self .dBT= array(zeros (( len( self .Temperatures) ,1)))
self .aT= array(zeros (( len( self .Temperatures) ,1)))
i f self . Extrapolation=="Spline" :

self . ExtrapolationFactor=0.

Vmin=(1.−self . ExtrapolationFactor)∗min( self .Volumes)
Vmax=(1.+self . ExtrapolationFactor)∗max( self .Volumes)
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V=linspace (Vmin,Vmax,10)

(FittingResults ,params) = \
FitEOS( self .Volumes, self . Energies ,EOS=self .FittingEOS)

ExtrapolatedEnergy = \
GetExtrapolatedEnergies(params, V,EOS=self .FittingEOS)

i f self .Anharmonicity==True:
i f self . AnharmonicityCorrection == "Wallace" :

self .VibFreeEnergies = \
self .VibFreeEnergies+self .AVibFreeEnergies

V=array ([V])
for i in range( len( self .Temperatures ) ) :

i f self .Anharmonicity==True:
i f self . AnharmonicityCorrection=="Wu" :

self .ApplyAnharmonicCorrection( i )

i f ’EleFreeEnergies ’ in kwargs:
FreeEnergy=self .VibFreeEnergies[ i , :]+ self . EleFreeEnergies[ i , : ]

else :
FreeEnergy=self .VibFreeEnergies[ i , : ]

i f self . Extrapolation=="Poly" :
polycoeffs=polyfit ( self .Volumes.T[0] ,FreeEnergy,1)
ExtrapolatedFreeEnergy=polyval(polycoeffs ,V)

else :
tck=interpolate . splrep ( self .Volumes.T[0] ,FreeEnergy)
ExtrapolatedFreeEnergy=interpolate . splev(V[0] , tck)
ExtrapolatedFreeEnergy=array ([ExtrapolatedFreeEnergy])

ExtrapolatedFreeEnergy = ExtrapolatedFreeEnergy+ExtrapolatedEnergy
ExtrapolatedFreeEnergy = array(ExtrapolatedFreeEnergy)
(FittingResults ,params) = \

FitEOS(V.T, ExtrapolatedFreeEnergy .T,EOS=self .FittingEOS)
self .VT[ i ] = FittingResults ["volume"] # Volume vs T
self .FT[ i ] = FittingResults ["energy"] # Free Energy vs T
self .BT[ i ] = FittingResults ["bulk"] # Bulk vs T
self .dBT[ i ] =FittingResults ["dB"] # dB vs T
self . Fitting_chi_squared = \

self . Fitting_chi_squared+FittingResults ["chi−squared"]

tck=interpolate . splrep (V[0] ,ExtrapolatedFreeEnergy[0])
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self .HFT[ i ] =interpolate . splev( self .V0, tck)

i f i == 0: # Linear Thermal Expansion Coefficient
self .aT[ i]=0

else :
self .aT[ i ] = ( self .VT[ i ] − self .VT[ i−1])/\

( self .Temperatures[ i ] −
self .Temperatures[ i−1])/self .VT[ i ] /3 . ;

self .Thermodynamics = \
ThermodynamicFunctions( self .Temperatures , self .FT)

return

def ApplyAnharmonicCorrection( self , i ) :
volumes = self .Volumes.T[0]
energies = self . Energies .T[0]
VibFreeEnergies = self .VibFreeEnergies[ i , : ]
QuasiHarmonicFreeEnergy = energies+VibFreeEnergies
vib_polycoeffs = polyfit ( self .Volumes.T[0] ,

self .VibFreeEnergies[ i , : ] ,1)
(FittingResults ,params) = \

FitEOS(volumes.T,QuasiHarmonicFreeEnergy,EOS=self .FittingEOS)
vTQH = FittingResults ["volume"] # Quasi−Harmonic V(T)
vTA = volumes∗(1−self .AnharmonicityFactor∗(vTQH−self .V0) / self .V0)
self .VibFreeEnergies[ i , :]=polyval(vib_polycoeffs ,vTA)

def CalculateAnharmonicFreeEnergy( self ) :
h=Constants .h
kB=Constants .kB
self .AVibFreeEnergies=mat( self .AVibFreeEnergies)
(row,column)=shape( self .AVibFreeEnergies)
logVTheta=mat( log( self .VTheta))
GruV=−fprime(logVTheta[: ,0] , logVTheta[: ,1])
tck=interpolate . splrep ( self .VTheta[: ,0] ,GruV)

for i in range(column):
(TD2,Mom2)=CalculateDebyeTemperature( self . vdos_all [ i , : , : ] ,2 )
Debye=(h/kB)∗((5./3.)∗Mom2∗∗2.)∗∗(1./2.)
G=interpolate . splev( self .VTheta[ i ,0] , tck)
a=3∗kB/Debye∗(0.0078∗G−0.0154)

t1=(1/2.∗Debye + Debye/ (exp(Debye/ self .Temperatures)−1.) )∗∗2.
t2=(2. ∗ (Debye/ self .Temperatures)∗∗2. ∗ exp(Debye/ \

self .Temperatures ) / (exp(Debye/ self .Temperatures)−1.)∗∗2. ) \
∗self .Temperatures
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t2 [ isnan( t2)>0]=0
Fanharmonic=a/3.∗( t1+t2 )

self .AVibFreeEnergies[ : , i ]=self .NumberofAtoms∗Fanharmonic

self .AVibFreeEnergies=array( self .AVibFreeEnergies)

def CalculateGruneissenParameter( self ) :
# First we calculate the Gruneissen parameter directly from
# variation in Debye Temperature as a function of volume, with the
# Debye temperature calculated directly from the phonon DOS.

self . GruneissenDirect = array(zeros (( len( self .Temperatures) ,1)))

x = log( self .VTheta[: ,0])
y = log( self .VTheta[: ,1])
tck = interpolate . splrep (x,y, s=0,k=3)
x2 = log( self .VT)
x2[0] = x2[0]+1e−14
p = polyfit (x,y,2)
y2 = polyval(p,x2)
self . GruneissenDirect =−fprime(x2,y2)
self . GruneissenSlater = self .dBT∗0.5−1./6.
self .GruneissenDugdale = self .dBT∗0.5−1./2.
self .GruneissenVaschenko = self .dBT∗0.5−5./6.
tck=interpolate . splrep ( self .Temperatures , self . GruneissenDirect)
self .Gruneissen_at_0K = interpolate . splev( self .V0, tck)

def CalculatePropertiesat298K( self ) :
tck = interpolate . splrep ( self .Temperatures , self .aT,k=3)
self .aT_at_298K = interpolate . splev(298.15,tck)
tck = interpolate . splrep ( self .Temperatures , self .VT,k=3)
self .VT_at_298K = interpolate . splev(298.15,tck)
tck = interpolate . splrep ( self .Temperatures , self .BT,k=3)
self .BT_at_298K = interpolate . splev(298.15,tck)
tck = interpolate . splrep ( self .Temperatures , self .dBT,k=3)
self .dBT_at_298K = interpolate . splev(298.15,tck)
tck = interpolate . splrep ( self .Temperatures , self . GruneissenDirect ,k=3)
self .Gruneissen_at_298K=interpolate . splev(298.15,tck)

def CalculateVibrationalParametersat0K( self ) :
# Obtains the Vibrational Parameters at 0K
V0 = self .V0
DebyeMomentData = self .DebyeMomentData
tck=interpolate . splrep (DebyeMomentData[: ,0] ,
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DebyeMomentData[: ,1] , s=0,k=3)
self .MaximumFrequency_at_0K = interpolate . splev(V0, tck)

tck=interpolate . splrep (DebyeMomentData[: ,0] ,
DebyeMomentData[: ,2] , s=0,k=3)

self .AverageFrequency_at_0K = interpolate . splev(V0, tck)

tck=interpolate . splrep (DebyeMomentData[: ,0] ,
DebyeMomentData[: ,3] , s=0,k=3)

self .DebyeFrequency_at_0K = interpolate . splev(V0, tck)

tck=interpolate . splrep (DebyeMomentData[: ,0] ,
DebyeMomentData[: ,4] , s=0,k=3)

self .DebyeWallerDebyeTemperature_at_0K = interpolate . splev(V0, tck)

tck=interpolate . splrep (DebyeMomentData[: ,0] ,
DebyeMomentData[: ,5] , s=0,k=3)

self .EntropyDebyeTemperature_at_0K = interpolate . splev(V0, tck)

tck=interpolate . splrep (DebyeMomentData[: ,0] ,
DebyeMomentData[: ,6] , s=0,k=3)

self .AverageDebyeTemperature_at_0K = interpolate . splev(V0, tck)

tck=interpolate . splrep (DebyeMomentData[: ,0] ,
DebyeMomentData[: ,7] , s=0,k=3)

self .CpDebyeTemperature_at_0K = interpolate . splev(V0, tck)

def NormalizeperAtom( self ) :
i f self .NormalizedperAtom == False :

i f not self .NumberofAtoms == 1:
NumberofAtoms = self .NumberofAtoms
self .NormalizedperAtom = True
self .V0 = self .V0/NumberofAtoms
self .E0 = self .E0/NumberofAtoms
self .VT = self .VT/NumberofAtoms
self .VT_at_298K = self .VT_at_298K/NumberofAtoms
self .FT = self .FT/NumberofAtoms
self .HFT = self .HFT/NumberofAtoms
self .Thermodynamics.NormalizeperAtom(NumberofAtoms)

else :
self .NormalizedperAtom = True

def eV2Joules( self ) :
i f self . Units=="eV/atom" :

self . Units = "J /mol"
# Note: Enthalpies will be in kJ /mol while
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# entropies and specific heats will be in J/mol/K
ConversionFactor = 1.60217733e−19∗6.0221367e23
self .Thermodynamics.eV2Joules()
self .B0 = self .B0∗160.21892
self .BT = self .BT∗160.21892
self .BT_at_298K = self .BT_at_298K∗160.21892
self .FT = self .FT∗ConversionFactor/1000.
self .HFT = self .HFT∗ConversionFactor/1000.

def Joules2eV( self ) :
i f self . Units=="J /mol" :

self . Units = "eV/atom"
# Note: Enthalpies will be in kJ /mol while
# entropies and specific heats will be in J/mol/K
ConversionFactor = 1.60217733e−19∗6.0221367e23
self .Thermodynamics.eV2Joules()
self .B0 = self .B0/160.21892
self .BT = self .BT/160.21892
self .BT_at_298K = self .BT_at_298K/160.21892
self .FT = self .FT/ConversionFactor∗1000.
self .HFT = self .HFT/ConversionFactor∗1000.

def WriteInfoFile( self , filename , approximation ) :
f=open("POSCAR" ,"r")
SystemName=f . readline ()
f . close

f=open(filename , ’w’)
f . write ( ’_______________________________________________________\n’ )
system=’This is the information f i le for system: ’+SystemName
f . write (system)
f . write ( ’Calculations were done under the ’ +

approximation + ’ approximation \n’ )
i f self .Anharmonicity==True:

f . write ( ’Anharmonicity was considered . \n’ )
f . write ( ’Method used: %s \n’ %\

( self . AnharmonicityCorrection))
i f self . AnharmonicityCorrection=="Wu" :

f . write ( ’Correction Factor = %12.6f \n’ %\
( self .AnharmonicityFactor))

f . write ( ’_________________________________________________________\n’ )
f . write ( ’Units used: ’+self . Units+’ \n’ )
i f self . Units=="J /mol" :

BulkUnits="GPa"
EnthalpyUnits="kJ /mol"
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EntropyUnits="J /mol/K"
else :

BulkUnits="eV/Â 2"
EnthalpyUnits="eV/atom"
EntropyUnits="eV/atom/K"

i f self .NormalizedperAtom==True:
npa="True"

else :
npa="False"

f . write ( ’The quantities have been normalized: ’+npa+’ \n’ )
f . write \

( ’===================Properties at 0K==========================\n’ )
f . write \

( ’Equilibrium volume at 0K : %12.6f Â 3 \n’ %\
( self .V0))

f . write ( ’Total Energy at 0K : %12.6e eV \n’ %\
( self .E0))

f . write ( ’Bulk Modulus at 0K : %12.6e %s \n’ %\
( self .B0, BulkUnits))

f . write ( ’Pressure Derivative of Bulk Modulus : %12.6f \n’ %\
( self .dB0))

f . write \
( ’Vibrational Properties at 0K=================================\n’ )

f . write \
( ’Gruneissen Parameter : %12.6f \n’ %\

( self .Gruneissen_at_0K))
f . write \

( ’Debye Frequency at 0K : %12.6e Hz \n’ %\
( self .DebyeFrequency_at_0K))

f . write \
( ’Entropy Debye Temperature (0th Moment) : %12.6f K \n’ %\

( self .EntropyDebyeTemperature_at_0K))
f . write \

( ’Average Debye Temperature (1st Moment) : %12.6f K \n’ %\
( self .AverageDebyeTemperature_at_0K))

f . write \
( ’Cp Debye Temperature (2nd Moment) : %12.6f K \n’ %\

( self .CpDebyeTemperature_at_0K))
f . write \

( ’Debye−Waller Debye Temperature (−2nd Moment) : %12.6f K \n’ %\
( self .DebyeWallerDebyeTemperature_at_0K))

f . write \
( ’========================================================\n’ )

f . write \
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( ’Properties at 298K:========================================\n’ )
f . write \

( ’Equilibrium volume at 298K : %12.6f Â 3 \n’ %\
( self .VT_at_298K))

f . write ( ’Thermal Expansion Coefficient at 298K : %12.6e 1/K \n’ %\
( self .aT_at_298K))

f . write ( ’Bulk Modulus at 298K : %12.6e %s \n’ %\
( self .BT_at_298K, BulkUnits))

f . write ( ’Pressure Derivative of Bulk Modulus : %12.6f \n’ %\
( self .dBT_at_298K))

f . write ( ’Gruneissen Parameter at 298K: : %12.6f \n’ %\
( self .Gruneissen_at_298K))

f . write ( ’Entropy at 298K : %12.6f %s \n’ %\
( self .Thermodynamics.Entropy_at_298K,EntropyUnits ))

f . write ( ’Heat Capacity at 298K : %12.6f %s \n’ %\
( self .Thermodynamics.HeatCapacity_at_298K,EntropyUnits ))

f . write ( ’=====================================================\n’ )
f . close ()

class FullThermodynamics:

def __init__( self ,Anharmonicity=False ,∗∗kwargs) :

i f Anharmonicity==True:
i f ’AnharmonicityFactor’ in kwargs:

self .CalculateThermodynamics(AnharmonicCorrection = "Wu" ,
AnharmonicityFactor = kwargs[ ’AnharmonicityFactor’ ])

else :
self .CalculateThermodynamics(AnharmonicCorrection="Wallace")

else :
self .CalculateThermodynamics()

self .Anharmonicity = Anharmonicity
self .NormalizedperAtom = False
self . Units = "eV/atom"

def CalculateThermodynamics( self ,∗∗kwargs) :
print ’Collecting data . . . . ’
CollectedData = CollectData . CollectData(what=’vol ’ )
temperatures = CollectedData["temperatures"]
volumes = CollectedData["volumes"]
energies = CollectedData["energies"]
fvib = CollectedData["fvib"]
felec = CollectedData["felec"]
VTheta = CollectedData["VTheta"]
DebyeMomentData = CollectedData["DebyeMomentData"]
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vdos_all = CollectedData["vdos"]

del CollectedData

print ’Calculating quasi−harmonic approximation . . . . . ’
self .QH = BulkThermodynamicProperties(volumes, temperatures ,

energies , fvib ,
VTheta,DebyeMomentData)

print ’Calculating harmonic approximation . . . . . ’
self .H = ThermodynamicFunctions( temperatures , self .QH.HFT)
print ’Calculating quasi−harmonic +electronic approximation . . . . . ’
self .QHEL = BulkThermodynamicProperties(volumes, temperatures ,

energies , fvib , VTheta,
DebyeMomentData,
EleFreeEnergies=felec )

print ’Calculating harmonic + electronic approximation . . . . . ’
self .HEL = ThermodynamicFunctions(temperatures , self .QHEL.HFT)

i f ’AnharmonicCorrection’ in kwargs:
print ’Calculating quasi−harmonic + electronic + anharmonicity’ \

+’ approximation . . . . . ’
i f not ’AnharmonicityFactor’ in kwargs:

self .QHELAN = \
BulkThermodynamicProperties(volumes,

temperatures ,
energies ,
fvib ,
VTheta,
DebyeMomentData,
EleFreeEnergies=felec ,
Anharmonicity=True,

AnharmonicityCorrection="Wallace" ,
vdos_all=vdos_all )

else :

self .QHELAN = BulkThermodynamicProperties(volumes,
temperatures ,
energies ,
fvib ,
VTheta,
DebyeMomentData,
EleFreeEnergies=felec ,
Anharmonicity=True,
AnharmonicityCorrection="Wu" ,
AnharmonicityFactor=kwargs[ ’AnharmonicityFactor’ ])
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def eV2Joules( self ) :
i f self . Units=="eV/atom" :

self . Units="J /mol"
self .QH.eV2Joules()
self .QHEL.eV2Joules()
self .H.eV2Joules()
self .HEL.eV2Joules()
i f self .Anharmonicity==True:

self .QHELAN.eV2Joules()
print ’Convertion to Joules done. ’

def Joules2eV( self ) :
i f self . Units=="J /mol" :

self . Units="eV/atom"
self .QH.Joules2eV()
self .QHEL.Joules2eV()
self .H.Joules2eV()
self .HEL.Joules2eV()
i f self .Anharmonicity==True:

self .QHELAN.Joules2eV()
print ’Convertion to eV done. ’

def NormalizeperAtom( self ) :
i f self .NormalizedperAtom==False :

self .NormalizedperAtom=True
NumberofAtoms=CountAtoms()
self .QH.NormalizeperAtom()
self .H.NormalizeperAtom(NumberofAtoms)
self .QHEL.NormalizeperAtom()
self .HEL.NormalizeperAtom(NumberofAtoms)
i f self .Anharmonicity==True:

self .QHELAN.NormalizeperAtom()
print ’Results Normalized per Number of Atoms. ’

def WritetoFile ( self ) :

print ’Writing data to f i le . . . ’
whatlist = ["Enthalpy" , "RelativeEnthalpy" , "Entropy" ,

"HeatCapacity" , "FreeEnergy"]
i f not self .Anharmonicity==True:

XX=mat(zeros (( len( self .H.Temperatures) ,5)))
else :

XX=mat(zeros (( len( self .H.Temperatures) ,6)))
XX[: ,0] = array( self .H.Temperatures)
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for i in range( len( whatlist ) ) :
XX[: ,1] = getattr ( self .H, whatlist [ i ])
XX[: ,2]= getattr ( self .HEL, whatlist [ i ])
XX[: ,3]= getattr ( self .QH.Thermodynamics, whatlist [ i ])
XX[: ,4]= getattr ( self .QHEL.Thermodynamics, whatlist [ i ])
i f self .Anharmonicity==True:

XX[: ,5]= getattr ( self .QHELAN.Thermodynamics, whatlist [ i ])
Array2File(XX, whatlist [ i ]+" . dat")

whatlist2=["VT" , "aT" , "BT" , "dBT" , "GruneissenDirect"]
namelist=["VolumeExpansion. dat" , "CoefficientofThermalExpansion . dat" ,

"BulkModulus. dat" , "BulkModulusPressureDerivative . dat" ,
"GruneissenConstant . dat"]

i f not self .Anharmonicity==True:
XX=mat(zeros (( len( self .H.Temperatures) ,3)))

else :
XX=mat(zeros (( len( self .H.Temperatures) ,4)))

XX[: ,0] = array( self .H.Temperatures)
for i in range( len(whatlist2 ) ) :

XX[: ,1] = getattr ( self .QH, whatlist2 [ i ])
XX[: ,2] = getattr ( self .QHEL, whatlist2 [ i ])
i f self .Anharmonicity==True:

XX[: ,3] = getattr ( self .QHELAN, whatlist2 [ i ])
Array2File(XX, namelist [ i ])

def Pickled( self , filename ) :
"""
This method pickles the Full Thermodynamics Class i t se l f .

"""
f i le = open(filename+" .p" , "w")
cPickle .dump( self , f i le )
f i le . close ()

def Runfitfc ( fr ,kp) :

fr=float ( fr )
kp=float (kp)
parentdir = os .getcwd()

print parentdir
( dirs , dirsfloat ) = GetDirectoriesList ( ’vol ’ )
for directory in dirs :

os . chdir ( parentdir )
os . chdir ( directory )
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os . system( ’rm fc . out vdos . out ’ )
os . chdir ( parentdir )
fitfccommand=’ f i t fc −f −fr=%f −kp=%f ’%(fr ,kp)
os . system(fitfccommand)

counter =0
for directory in dirs :

os . chdir ( parentdir )
os . chdir ( directory )
i f not os . path . i s f i l e ( ’vdos . out ’ ) :

counter=counter+1

os . chdir ( parentdir )

return counter

def AdaptiveRunfitfc( fr ,kp) :
fr=float ( fr )
kp=float (kp)

f r l i s t=linspace ( fr , fr /2. ,50)

for i in range( len( f r l i s t ) ) :
fr=f r l i s t [ i ]
counter=Runfitfc ( fr ,kp)
i f counter == 0:

break
return counter

i f __name__ == "__main__" :

try :
import psyco
psyco. bind( intfr2 )
psyco . bind(get_Cp_from_DebyeTemperature)
psyco . bind(GetVibrationalFreeEnergy)

except ImportError :
pass

t ic=time . time()
i f ’−ful l ’ in sys . argv :

print ’Calculating Thermodynamic Properties . . . ’
FT=FullThermodynamics(Anharmonicity=True)
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# Collects Data, Calculates THermodyamic Properties
FT.eV2Joules()
FT.NormalizeperAtom()
FT. Pickled("FT") # Pickles the Full Thermodynamics Instance
FT. WritetoFile ()
# Writes to Files . dat Contents are as follows: In f i les with five
# columns , called Enthalpies . dat , for example, the f i r s t column
# corresponds to Temperature , then Harmonic Enthalpy , then Harmonic +
# Electronic Enthalpy , etc .
# In f i l es with three columns, the f i r s t one corresponds to
# temperature , the second one corresponds to quasi−harmonic
# calculations and the third one corresponds to quasi−harmonic +
#electronic calculations
FT.QH. WriteInfoFile( ’Info−QH. dat ’ , ’quasi−harmonic’ )
FT.QHEL. WriteInfoFile( ’Info−QHEL. dat ’ , ’quasi−harmonic + electronic ’ )
i f FT.Anharmonicity==True:

FT.QHELAN. WriteInfoFile( ’Info−QHELAN. dat ’ ,
’quasi−harmonic + electronic + \
anharmonicity’ )

print ’Please check Info−xxx. dat f i les for summary of calculations ’
el i f ’−H’ in sys . argv :

fvib=File2Array( ’fvib . dat ’ )
H=ThermodynamicFunctions(mat( fvib [ : ,0 ] ) .T,mat( fvib [ : ,1 ] ) .T)

el i f ’−profile ’ in sys . argv :
import cProfile
cProfile . run( ’FT=FullThermodynamics() ’ , ’FTprof’ )
import pstats
p=pstats . Stats ( ’FTprof’ )
p. sort_stats ( ’time’ ) . print_stats (15)

el i f ’−f i t fc ’ in sys . argv :
i f len(sys . argv)>2:

fr=float (sys . argv[2])
else :

fr=6.0
counter=AdaptiveRunfitfc( fr ,25000.)
print counter

else :
pass

toc=time . time()
print toc−tic , ’has elapsed ’

ELC.py

#! / usr /bin /env python
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"""
This is the main module for post−processing C11 and C12 elastic
constant calculations . An object is created for each strain
directory , containing al l the necessary information from that
directory . An object is created for each volume directory , containing
al l the strain directory objects along with other information . All
volume directory objects are condensed into a single object and i t is
pickled into a single object C11_C12. pkl

The data collection and pickling steps may be skipped i f previously
done by using the −p option at the command line .
"""

__author__ = "Mike Williams & Raymundo Arroyave"
__version__ = "0.3$"
__date__ = "$Date: July 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

import os
import sys
import f i l eu t i l s
import Constants
import Fele
import numpy
import scipy
import CollectData
import Fvib
import cPickle
import pylab

class StrainDir :
"""
This object is a data container . We collect al l necessary
information from a given strain directory and place i t in this
object
"""
def __init__( self , params) :

self . Strain = self . GetStrain ()
self .E0 = self .GetE0()
self .Temperatures = \

scipy . array(CollectData .GetTemperatures(params[ ’mintemp’ ] ,
params[ ’maxtemp’ ] ,
params[ ’dTemp’ ]))

self .Fvib = self .GetFvib()
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self . Felec = self .GetFelec()

def GetStrain( self ) :
directory = os .getcwd( ) . spl i t ( ’ / ’)[−1]
i f directory[−2] == ’−’ :

strain = float ( directory[−2:])∗.01
else :

strain = float ( directory[−1])∗.01
return strain

def GetE0( self ) :
data = open( ’OSZICAR’ ) . readlines()[−1]. spl i t ()[4]
return float (data)

def GetFvib( self ) :
parentdir = os .getcwd()
os . chdir ( ’ . . / ’ )
data = Fvib . GetVibrationalFreeEnergy(params[ ’mintemp’ ] ,

params[ ’maxtemp’ ] ,
params[ ’dTemp’ ] ,
writeflag=True)

os . chdir ( parentdir )
return data

def GetFelec( self ) :
parentdir = os .getcwd()
os . chdir ( ’ . . / ’ )
data = Fele . GetElectronicFreeEnergy(params[ ’mintemp’ ] ,

params[ ’maxtemp’ ] ,
params[ ’dTemp’ ] ,
writeflag=True)

os . chdir ( parentdir )
return data

class VolDir:
"""
This object is another data container .
I t collects al l the strain sub−directories as well as other data
at the volume level .
"""
def __init__( self , params) :

self .CellVolume = CollectData .CellVolume()
self . Strains = []
self . StrainDirnames = CollectData . GetDirectoriesList ( ’11str ’ )[0]
for strain in self . StrainDirnames :
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parentdir = os .getcwd()
os . chdir ( parentdir+’ / ’+strain )
self . Strains .append(StrainDir (params))
os . chdir ( parentdir )

self . StrainValues = self . GetStrainValues ()
self .C_C_C11_C12 = self .ColdCurveC11_C12()
self .C11_C12_Fvib, self .C11_C12_Felec, self .C11_C12_Felec_Fvib = \

self .GetC11_C12()

def GetStrainValues( self ) :
data = []
for i in self . Strains :

data .append( i . Strain )
return data

def GetC11_C12( self ) :
"""
This module is used i f the vibrational and electric contributions to
the thermal free energy are to be included in the calculation of the
elastic constants . Normally, these affects are assumed to be
negligible and this function is not used .
"""
FvibEnergies = []
FelecEnergies = []
FvibFelecEnergies = []
for strain in self . Strains :

FvibEnergies .append( strain .E0 + strain .Fvib[: ,1])
FelecEnergies .append( strain .E0 + strain . Felec [: ,1])
FvibFelecEnergies .append( strain .E0 + strain .Fvib[: ,1] +

strain . Felec [: ,1])
FvibEnergies = scipy . array(FvibEnergies ) .T
FelecEnergies = scipy . array(FelecEnergies ) .T
FvibFelecEnergies = scipy . array(FvibFelecEnergies ) .T
C11_C12_Fvib = scipy . zeros( len(FvibEnergies ))
C11_C12_Felec = scipy . zeros( len(FelecEnergies ))
C11_C12_Felec_Fvib = scipy . zeros( len(FvibFelecEnergies ))
for i in range( len(FvibEnergies ) ) :

C11_C12_Fvib[ i ] = self .FitC11_C12(scipy . array( self . StrainValues ) ,
FvibEnergies[ i ])

C11_C12_Felec[ i ] = self .FitC11_C12(scipy . array( self . StrainValues ) ,
FelecEnergies[ i ])

C11_C12_Felec_Fvib[ i ] = self .FitC11_C12(scipy . array
( self . StrainValues ) ,
FvibFelecEnergies[ i ])

return C11_C12_Fvib, C11_C12_Felec, C11_C12_Felec_Fvib
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def ColdCurveC11_C12( self ) :
energies = []
for strain in self . Strains :

energies .append( strain .E0)
energies = scipy . array(energies )
return self .FitC11_C12(scipy . array( self . StrainValues ) , energies )

def FitC11_C12( self , strains , energies ) :
# For extracting the elastic constants a quadratic polynomial
# is f i t to the strain /energy data
p = scipy . polyfit ( strains , energies , 2)
answer = p[0]/ self .CellVolume∗160.21892
#the 160.21892 converts the answer to GPa
return answer

class AllData :
def __init__( self , params) :

self .VolDirnames = CollectData . GetDirectoriesList ( ’vol ’ )[0]
self .Volumes = []
for volume in self .VolDirnames:

parentdir = os .getcwd()
os . chdir ( parentdir+’ / ’+volume)
self .Volumes.append(VolDir(params))
os . chdir ( parentdir )

i f __name__ == "__main__" :
params = f i leu t i l s . ReadInputFile( ’ELCparams. in ’ )
UsePickled = False
i f len(sys . argv) > 1:

i f sys . argv[1][1:] == ’p’ :
UsePickled = True

i f UsePickled:
print ’Using Pickled data ’
pkl_file = open( ’C11_C12. pkl ’ , ’rb ’ )
data = cPickle . load( pkl_file )

else :
data = AllData(params)
output = open( ’C11_C12. pkl ’ , ’wb’)
cPickle .dump(data , output)
output . close ()

Volumes = []
for vol in data .Volumes:

Volumes.append(vol .CellVolume)
Volumes = scipy . array(Volumes)
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NAtoms = CollectData .CountAtoms()
VolumeExpansion = f i l eu t i l s . File2Array( ’VolumeExpansion. dat ’ )
VolumeExpansion[ : ,1 : ] = VolumeExpansion[: ,1:]∗NAtoms

#get answer from Cold Curve data alone
#note the C11−C12 we are getting is the ISOTHERMAL Elastic Constant
ColdCurve = []
C11_C12vT = []
index = 0
for volume in data .Volumes:

ColdCurve.append(volume.C_C_C11_C12)

#interpolate C11−C12 with cubic spline
tck = scipy . interpolate . splrep (Volumes, ColdCurve, k=3)
for row in VolumeExpansion:

ThisC11_C12 = scipy . interpolate . splev(VolumeExpansion[index ,2] , tck)
C11_C12vT.append(ThisC11_C12)
index = index + 1

C11_C12vT = scipy . array(C11_C12vT)
Output = scipy .column_stack((VolumeExpansion[: ,0] , scipy . array(C11_C12vT)))
f i l eu t i l s . Array2File(Output , ’C11_C12vT. dat ’ )

#seperate C11 and C12 using the bulk modulus
B = f i leu t i l s . File2Array( ’BulkModulus. dat ’ )[ : ,2]
C11 = (2./3.)∗C11_C12vT+B
C11vT = scipy .column_stack((VolumeExpansion[: ,0] , C11))
C12 = C11− C11_C12vT
C12vT = scipy .column_stack((VolumeExpansion[: ,0] , C12))
f i l eu t i l s . Array2File(C11vT, ’C11vT. dat ’ )
f i l eu t i l s . Array2File(C12vT, ’C12vT. dat ’ )

#Change ISOTHERMAL to ADIABATIC
Cv = f i l eu t i l s . File2Array( ’HeatCapacity . dat ’ )[: ,2]∗6.24e18/6.02e23# j /mol/k
alpha = f i l eu t i l s . File2Array( ’CoefficientofThermalExpansion . dat ’ )[ : ,3]
V = f i l eu t i l s . File2Array( ’VolumeExpansion. dat ’ )[ : ,3]
T = C11vT[: ,0]
factor = 6.241506363e−3
C11 = C11 ∗ factor
C12 = C12 ∗ factor

lambda1 = alpha∗(C11+C12)
lambda2 = alpha∗(C11+C12)

C11Adiabatic = C11 + (V∗lambda1∗lambda1∗T)/Cv
C12Adiabatic = C12 + (V∗lambda2∗lambda2∗T)/Cv
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C11Adiabatic = C11Adiabatic / ( factor )
C12Adiabatic = C12Adiabatic / ( factor )

C11AdiabvT = scipy .column_stack((VolumeExpansion[: ,0] , C11Adiabatic))
C12AdiabvT = scipy .column_stack((VolumeExpansion[: ,0] , C12Adiabatic))
f i l eu t i l s . Array2File(C11AdiabvT, ’C11Adiabatic . dat ’ )
f i l eu t i l s . Array2File(C12AdiabvT, ’C12Adiabatic . dat ’ )

#Create C11−C12 volume temperature surface − this is for visualization
#purposes only
ELCsurface = []
for volume in data .Volumes:

ELCsurface.append(volume.C11_C12_Felec_Fvib)
ELCsurface = scipy . array(ELCsurface) .T
f i l eu t i l s . Array2File(ELCsurface[ ::100 ,:] , ’C11_C12Surface. dat ’ )

C44.py

#! / usr /bin /env python
"""
Contains various functions for the calculation of elastic constants
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com) &\
Raymundo Arroyave (rarroyave at tamu dot edu"

__version__ = "0.3$"
__date__ = "$Date: July 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

import os
import sys
import f i l eu t i l s
import Constants
import Fele
import numpy
import scipy
import CollectData
import Fvib
import cPickle
import pylab

class StrainDir :
def __init__( self , params) :
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self . Strain = self . GetStrain ()
self .E0 = self .GetE0()
self .Temperatures = scipy . array(CollectData .GetTemperatures

(params[ ’mintemp’ ] , params[ ’maxtemp’ ] ,
params[ ’dTemp’ ]))

self .Fvib = self .GetFvib()
self . Felec = self .GetFelec()

def GetStrain( self ) :
directory = os .getcwd( ) . spl i t ( ’ / ’)[−1]
i f directory[−2] == ’−’ :

strain = float ( directory[−2:])∗.01
else :

strain = float ( directory[−1])∗.01
return strain

def GetE0( self ) :
data = open( ’OSZICAR’ ) . readlines()[−1]. spl i t ()[4]
return float (data)

def GetFvib( self ) :
parentdir = os .getcwd()
os . chdir ( ’ . . / ’ )
data = Fvib . GetVibrationalFreeEnergy(params[ ’mintemp’ ] ,

params[ ’maxtemp’ ] ,
params[ ’dTemp’ ] ,
writeflag=True)

os . chdir ( parentdir )
return data

def GetFelec( self ) :
parentdir = os .getcwd()
os . chdir ( ’ . . / ’ )
data = Fele . GetElectronicFreeEnergy(params[ ’mintemp’ ] ,

params[ ’maxtemp’ ] ,
params[ ’dTemp’ ] ,
writeflag=True)

os . chdir ( parentdir )
return data

class VolDir:
def __init__( self , params) :

self .CellVolume = CollectData .CellVolume()
self . Strains = []
self . StrainDirnames = CollectData . GetDirectoriesList ( ’44str ’ )[0]
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for strain in self . StrainDirnames :
parentdir = os .getcwd()
os . chdir ( parentdir+’ / ’+strain )
self . Strains .append(StrainDir (params))
os . chdir ( parentdir )

self . StrainValues = self . GetStrainValues ()
self .C_C_C44 = self .ColdCurveC44()
self .C44_Fvib, self .C44_Felec, self .C44_Felec_Fvib = self .GetC44()

def GetStrainValues( self ) :
data = []
for i in self . Strains :

data .append( i . Strain )
return data

def GetC44( self ) :
FvibEnergies = []
FelecEnergies = []
FvibFelecEnergies = []
for strain in self . Strains :

FvibEnergies .append( strain .E0 + strain .Fvib[: ,1])
FelecEnergies .append( strain .E0 + strain . Felec [: ,1])
FvibFelecEnergies .append( strain .E0 +

strain .Fvib[: ,1] +
strain . Felec [: ,1])

FvibEnergies = scipy . array(FvibEnergies ) .T
FelecEnergies = scipy . array(FelecEnergies ) .T
FvibFelecEnergies = scipy . array(FvibFelecEnergies ) .T
C44_Fvib = scipy . zeros( len(FvibEnergies ))
C44_Felec = scipy . zeros( len(FelecEnergies ))
C44_Felec_Fvib = scipy . zeros( len(FvibFelecEnergies ))
for i in range( len(FvibEnergies ) ) :

C44_Fvib[ i ] = self .FitC44(scipy . array( self . StrainValues ) ,
FvibEnergies[ i ])

C44_Felec[ i ] = self .FitC44(scipy . array( self . StrainValues ) ,
FelecEnergies[ i ])

C44_Felec_Fvib[ i ] = self .FitC44(scipy . array( self . StrainValues ) ,
FvibFelecEnergies[ i ])

return C44_Fvib, C44_Felec, C44_Felec_Fvib

def ColdCurveC44( self ) :
energies = []
for strain in self . Strains :

energies .append( strain .E0)
energies = scipy . array(energies )
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return self .FitC44(scipy . array( self . StrainValues ) , energies )

def FitC44( self , strains , energies ) :
p = scipy . polyfit ( strains , energies , 2)
answer = p[0]/ self .CellVolume∗160.21892∗2

return answer

class AllData :
def __init__( self , params) :

self .VolDirnames = CollectData . GetDirectoriesList ( ’vol ’ )[0]
self .Volumes = []
for volume in self .VolDirnames:

parentdir = os .getcwd()
os . chdir ( parentdir+’ / ’+volume)
self .Volumes.append(VolDir(params))
os . chdir ( parentdir )

i f __name__ == "__main__" :
params = f i leu t i l s . ReadInputFile( ’ELCparams. in ’ )
UsePickled = False
i f len(sys . argv) > 1:

i f sys . argv[1][1:] == ’p’ :
UsePickled = True

i f UsePickled:
print ’Using Pickled data ’
pkl_file = open( ’C44. pkl ’ , ’rb ’ )
data = cPickle . load( pkl_file )

else :
data = AllData(params)
output = open( ’C44. pkl ’ , ’wb’)
cPickle .dump(data , output)
output . close ()

Volumes = []
for vol in data .Volumes:

Volumes.append(vol .CellVolume)
Volumes = scipy . array(Volumes)

NAtoms = CollectData .CountAtoms()
VolumeExpansion = f i l eu t i l s . File2Array( ’VolumeExpansion. dat ’ )
VolumeExpansion[ : ,1 : ] = VolumeExpansion[: ,1:]∗NAtoms

#get answer from Cold Curve data alone
ColdCurve = []
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C44vT = []
index = 0
for volume in data .Volumes:

ColdCurve.append(volume.C_C_C44)
tck = scipy . interpolate . splrep (Volumes, ColdCurve, k=3)
for row in VolumeExpansion:

ThisC44 = scipy . interpolate . splev(VolumeExpansion[index ,2] , tck)
C44vT.append(ThisC44)
index = index + 1

C44vT = scipy . array(C44vT)
Output = scipy .column_stack((VolumeExpansion[: ,0] , scipy . array(C44vT)))
f i l eu t i l s . Array2File(Output , ’C44vT. dat ’ )
#create C11−C12 volume temperature surface
ELCsurface = []
for volume in data .Volumes:

ELCsurface.append(volume.C44_Felec_Fvib)
ELCsurface = scipy . array(ELCsurface) .T
f i l eu t i l s . Array2File(ELCsurface[ ::100 ,:] , ’C44Surface . dat ’ )

CollectData.py

#! / usr /bin /env python
"""
Methods used in the calcultion of electronic free energies .
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com) , and \
Raymundo Arroyave (raymundo@fastmail .fm)"

__version__ = "0.3$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

import numpy
import os
import string
import Fvib
import Fele
import f i l eu t i l s
import pylab
import sys
from scipy import ∗

def CellVolume( ) :
"""
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Calculates the volume of a primitive unit cell

Requires : nothing
Returns : volume of the primitive unit cell
"""
#read in data from CONTCAR f i l e
inputfile = open("CONTCAR" , ’ r ’ )
data = inputfile . readlines ()
inputfile . close ()
latticevectors = zeros ((3 ,3))
x = []
x.append(data [2]. spl i t (" " ))
x.append(data [3]. spl i t (" " ))
x.append(data [4]. spl i t (" " ))
scalingfactor = 1
#eliminate null spaces in data
for counter in range(3):

while ’ ’ in x[counter ] :
x[counter ] .remove( ’ ’ )

#convert elements of l i s t s to array of floats
for counter in range(3):

for element in range( len(x[counter ] ) ) :
latticevectors [counter , element] = float (x[counter ][element])

a = scalingfactor∗latticevectors [0]
b = scalingfactor∗latticevectors [1]
c = scalingfactor∗latticevectors [2]
#calculate volume with the vector triple product
d = cross (b, c)
volume = dot(a ,d)
return volume

def GetE0( ) :
data = open( ’OSZICAR’ ) . readlines()[−1]. spl i t ()[4]
return float (data)

def CountAtoms( ) :
dummy = os .popen( ’cat POSCAR | head −n 6 | t a i l −n 1’)
data = dummy. readlines ()
data = data [0]. spl i t ()
integerl is t = []
for element in data :

integerl is t .append( int (element))
numberofatoms = sum( integerl is t )
return numberofatoms
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def GetTemperatures(Tmin, Tmax, dT) :
temp = numpy. arange(Tmin, Tmax, dT)
final = numpy. zeros (( len(temp) , 1))
for element in range( len(temp)) :

final [element] = temp[element]
return final

def GetDirectoriesList (prfx ) :
"""
This function returns a SORTED l i s t of directories with the prefix prfx .
I t assumes that the name of the directories must be prfx_Number, where
prfx stands for vol or s t r and NUMBER may be any integer or real
"""

cmd=’echo ‘ ls −l | grep "^d" | grep’+" "+prfx+" "+ \
’ | awk \ ’{ print $8}\ ’ | sed \ ’ s / ’+prfx+’_’+ \
’ / /g\ ’ | grep \’[0−9]\’ | sort −n ‘ ’

dummy=os .popen(cmd)
directories= dummy. readlines ()
directories =directories [0]. spl i t ()
DirectoriesList=[’any’ ] # This ini t ia l izes the l i s t
DirectoriesList .pop(0) # Removes dummy element

for i in numpy. arange( len( directories ) ) :
DirectoriesList .append(prfx+’_’+str ( directories [ i ] ) )
directories [ i ]=float ( directories [ i ])

return DirectoriesList , directories

def CollectData(what=’vol ’ ) :
#input parameters and variable ini t ial izat ion
inputparams = f i leu t i l s . ReadInputFile( ’ELCparams. in ’ )
( dirs , dirsfloat ) = GetDirectoriesList (what)
i f len( dirs)==0:

sys . stderr . write ( ’Error : No subdirectories present ! ! . . . . ’ )
sys . exit ()

Tmin = inputparams[ ’mintemp’]
Tmax = inputparams[ ’maxtemp’]
dT = inputparams[ ’dTemp’]

#ensure that parameters are the right type
Tmin=string . _float (Tmin)
Tmax=string . _float (Tmax)
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dT=string . _float (dT)

temperatures = GetTemperatures(Tmin, Tmax+dT, dT)
volumes = numpy. zeros (( len( dirs ) , 1))
energies = numpy. zeros (( len( dirs ) , 1))
fvib = numpy. zeros (( len( temperatures ) , len( dirs )))
felec = numpy. zeros (( len( temperatures ) , len( dirs )))
vdos_all = []
VTheta= numpy. zeros (( len( dirs ) ,2))
DebyeMomentData=numpy. zeros (( len( dirs ) ,9))
#iterate through volume directories
parentdir = os .getcwd()
counter = 0
for directory in dirs :

print ’Processing directory = %s . . . . ’%(directory )
os . chdir ( parentdir )
os . chdir ( directory )
i f what==’ str ’ :

os . chdir ( ’vol_0’ )

volumes[counter ][0] = CellVolume()
energies [counter ][0] = GetE0()
fvib [ : , counter] = Fvib . GetVibrationalFreeEnergy(Tmin, Tmax, dT,

writeflag=False ,
plotflag=False )[ : ,1]

felec [ : , counter] = Fele . GetElectronicFreeEnergy(Tmin, Tmax, dT,
writeflag=False ,
plotflag=False )[ : ,1]

i f what==’vol ’ :
VDOS=f i leu t i l s . File2Array( ’vdos . out ’ )
vdos_all .append(VDOS)
ph=Fvib .PhononDOS( writeflag=True)
VTheta[counter ,0]=volumes[counter ][0]
VTheta[counter ,1]=ph.TDM[1 ,1]
DebyeMomentData[counter ,0]=volumes[counter ][0]
DebyeMomentData[counter ,1]=ph.MaximumFrequency
DebyeMomentData[counter ,2]=ph.AverageFrequency
# Debye Frequency with respect to several moments
DebyeMomentData[counter ,3]=ph.TDM[1,1]∗2.0837E10 # 0th Moment
DebyeMomentData[counter ,4]=ph.TDM[0 ,1] # n=−2
DebyeMomentData[counter ,5]=ph.TDM[1 ,1] # n= 0
DebyeMomentData[counter ,6]=ph.TDM[2 ,1] # n= 1
DebyeMomentData[counter ,7]=ph.TDM[3 ,1] # n= 2
DebyeMomentData[counter ,8]=ph.TDM[4 ,1] # n= 4
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counter = counter + 1

#write output f i l es
volumes=mat(volumes)
energies=mat(energies )
temperatures=mat( temperatures)
fvib=mat( fvib )
felec=mat( felec )
vdos_all=array(vdos_all )

dirsfloat=mat( dirsfloat ) .T

os . chdir ( parentdir )
f i l eu t i l s . Array2File( temperatures , ’temperatures . dat ’ )
f i l eu t i l s . Array2File(volumes, ’volumes. dat ’ )
f i l eu t i l s . Array2File(energies , ’energy_all . dat ’ )
f i l eu t i l s . Array2File( fvib , ’ fvib_all . dat ’ )
f i l eu t i l s . Array2File( felec , ’ felec_all . dat ’ )
i f what==’vol ’ :

f i l eu t i l s . Array2File(VTheta, ’VTheta. dat ’ )
f i l eu t i l s . Array2File(DebyeMomentData, ’DebyeMomentData. dat ’ )

i f what==’ str ’ :
f i l eu t i l s . Array2File( felec , ’ strains . dat ’ )
results={’temperatures ’ : temperatures , ’volumes’ :volumes,

’energies ’ : energies , ’fvib ’ : fvib , ’ felec ’ : felec ,
’ strains ’ : dirsfloat}

else :
results={’temperatures ’ : temperatures , ’volumes’ :volumes,

’energies ’ : energies , ’fvib ’ : fvib , ’ felec ’ : felec ,
’VTheta’ : VTheta, ’DebyeMomentData’ :DebyeMomentData,
’vdos’ : vdos_all}

return results

i f __name__ == "__main__" :
( temperatures ,volumes, energies , fvib , felec ) = CollectData ()

EOS.py

#! / usr /bin /env python
"""
Modules for f i t t ing an equation of state
"""
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__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.1$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

from scipy import ∗
import numpy
from Scientific . Functions . LeastSquares import leastSquaresFit
from f i l eu t i l s import ∗
import pylab
import math

def FitLinear (vol , energies ) :
"""
Performs a linear f i t to the volume vs . energy curve
"""

vol=mat(vol)
energies=mat(energies )
(rv ,cv) = shape(vol)
( re , ce) = shape(energies )

i f cv > rv :
vol=vol .T

i f ce > re :
energies=energies .T

vol=array(vol)
energies=array(energies )

A1 = numpy.ones(( len(vol ) , 1))
A2 = numpy.mat(numpy.power(vol , −1./3))
A3 = numpy.mat(numpy.power(vol , −2./3))
A4 = numpy.mat(vol∗∗(−1.))
A = numpy. concatenate ((A1,A2,A3,A4) , axis=1)
x = numpy. linalg . pinv(A) ∗ energies
newenergies = A∗x

a = x[0 , 0]
b = x[1 , 0]
c = x[2 , 0]
d = x[3 , 0]

#extract values
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V0 = 4.∗c∗∗3 − 9.∗b∗c∗d + \
math. sqrt ((c∗∗2. − 3.∗b∗d) ∗ (4.∗c∗∗2 − 3.∗b∗d)∗∗2.)

V0 =−V0/b∗∗3.
B0 = 9.∗d + 5.∗c∗V0∗∗(1./3.) +2.∗b∗V0∗∗(2./3.)
B0 =(2.∗B0/(9∗V0∗∗2))
BP =(54.∗d +25.∗c∗V0∗∗(1./3)+8.∗b∗V0∗∗(2./3.))/ \

(27.∗d +15.∗c∗V0∗∗(1./3)+6.∗b∗V0∗∗(2./3))
E0=a + b∗V0∗∗(−1./3.) + c∗V0∗∗(−2./3.)+ d∗V0∗∗(−1.)

newenergies = a + b∗vol∗∗(−1./3.) + c∗vol∗∗(−2./3.)+ d∗vol∗∗(−1.)
Correlation = stats . pearsonr(energies ,newenergies)[0]
chisquared = 1−Correlation

FittingParameters = {’energy’ : E0, ’bulk’ : B0, ’volume’ : V0,
’dB’ : BP, ’chi−squared’ : chisquared}

params=(a ,b,c ,d)
return FittingParameters ,params

def Linear(params, V) :
return params[0] + params[1]∗V∗∗(−1./3) + params[2]∗V∗∗(−2./3) + \

params[3]∗V∗∗(−1.)

def Birch(params, V) :
p = params
ans = p[0]+(9./8.)∗p[1]∗p[2]∗((p[2]/V)∗∗(2./3.)−1)∗∗2.+ \

(9./16.)∗p[1]∗p[2]∗(p[3]−4.)∗((p[2]/V)∗∗(2./3.)−1.)∗∗3.
return ans

def GetExtrapolatedEnergies(params,V,EOS="Birch" ) :
i f EOS=="Linear" :

return Linear(params,V)
else :

return Birch(params,V)

def Birch_Murnaghan(params, V):
E0 = params[0]
B0 = params[1]
V0 = params[2]
dB0 = params[3]
ans = E0 + (9.∗V0∗B0/16.)∗(((V0/V)∗∗(2./3.)−1.)∗∗3.∗ \

dB0+((V0/V)∗∗(2./3.)−1.)∗∗2.∗(6.−4.∗(V0/V)∗(2. /3 . )) )
return ans

def FitEOS(volumes, energies ,EOS="Birch" ) :
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i f EOS=="Linear" :
FittingParameters= FitLinear (volumes, energies )

else :
FittingParameters= FitBirch(volumes, energies )

return FittingParameters

def FitBirch(volumes, energies ) :
data = mat(numpy. zeros (( len(energies ) , 2)))
volumes=mat(volumes)
energies=mat(energies )
(rv ,cv) = shape(volumes)
( re , ce) = shape(energies )

i f cv > rv :
volumes=volumes.T

i f ce > re :
energies=energies .T

data[: ,0]=volumes
data[: ,1]=energies
data=numpy. array(data)
initialvolume=numpy.sum(volumes) / len(volumes)
initialenergy=numpy.sum(energies ) / len(energies )
initialB=0.5
initialBP=4
c = leastSquaresFit (Birch , ( initialenergy , initialB , initialvolume ,

initialBP ) , data , stopping_limit = 1e−10)
FittingParameters = {’energy’ :c[0][0] , ’bulk’ :c[0][1] , ’volume’ :c[0][2] ,

’dB’ : c[0][3] , ’chi−squared’ : c[1]}
params=(c[0][0] ,c[0][1] ,c[0][2] ,c[0][3])

return FittingParameters ,params

i f __name__ == "__main__" :
#load data
energies = File2Array( ’energy_all . dat ’ )
data = numpy. zeros (( len(energies ) , 2))
volumes = File2Array( ’volumes. dat ’ )
data [: ,0] =volumes
data [: ,1] = energies
initialvolume=numpy.sum(volumes) / len(volumes)
x = numpy. linspace (data [: ,0][0] , data[: ,0][−1] , 100)
c = leastSquaresFit (Birch , (−3.5, 74, initialvolume , 5) , data ,

stopping_limit = 1e−10)
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#volume parameter is super sensitive
Birch_out = {’E0’ :c[0][0] , ’B0’ :c[0][1] , ’V0’ :c[0][2] , ’dB’ :c[0][3]}
fitdata_Birch = Birch(c[0] , x)

(FittingParameters ,params)=FitLinear (volumes, energies )
print ’Using Alternate EOS: ’
print FittingParameters
NewEnergies=GetExtrapolatedEnergies(params,volumes,EOS="Linear")
print NewEnergies
(FittingParameters ,params)=FitBirch(volumes, energies )
print ’Using Birch EOS: ’
print FittingParameters
NewEnergies=GetExtrapolatedEnergies(params,volumes,EOS="Birch")
print NewEnergies

Birch_fit = pylab . plot (x, fitdata_Birch , label = ’Birch Fit ’ )
Data_plot = pylab . plot (volumes, energies , ’o’ , label=’Data’ )

pylab . ylabel ( ’E0’ )
pylab . xlabel ( ’Volume’)
pylab . t i t l e ( ’E/V Curve Fitting ’ )
pylab . legend( loc=’upper lef t ’ )
pylab . savefig ( ’EVFits . eps’ )
pylab .show()

Fele.py

#! / usr /bin /env python
"""
Methods used in the calcultion of electronic free energies .
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com) , \
and Raymundo Arroyave (raymundo@fastmail .fm)"

__version__ = "0.2$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

import Constants
from scipy import ∗
from f i l eu t i l s import ∗
import pylab
import sys
import os
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from NumericalMethods import ∗

def FermiFunction(energy , FermiLevel , Temperature) :
"""
Calculates the Fermi Function

Requires : an array of Energy Values , the Fermi Level , and a temperature
Returns : an array with the value of the Fermi Function at the given

temperature
"""
kB = Constants .kB
return 1/(exp((energy−FermiLevel ) /kB/Temperature)+1)

def GetTotalElectrons(EDOS, FermiLevel , Temperature) :
"""
Calculates the total number of electrons in a system

Requires : an array with the electronic density of states , the Fermi Level
and a temperature

Returns : a float with the total number of electrons
"""
kB = Constants .kB
x = EDOS[: ,0]
y = EDOS[: ,1]∗FermiFunction(EDOS[: ,0] , FermiLevel , Temperature)
XX=Vect2Matrix(x,y)
TotalElectrons=intfr2 (XX)
return TotalElectrons

def FindMu(EDOS, Temperature) :
"""
Finds the Fermi Level

Requires : an array with the electronic density of states
Returns : a float with the Fermi Level
"""
FermiLevel = 0
x = EDOS[: ,0]
y = EDOS[: ,1]∗FermiFunction(EDOS[: ,0] , FermiLevel , Temperature)
tck = interpolate . splrep (x,y,k=3)
i f abs( interpolate . splev(0 , tck))<1e−3:

mu =0.
return mu

N0 = GetTotalElectrons(EDOS, FermiLevel , 1e−10)
FermiLevelGuesses = linspace(−0.5, 0.5 , 11)
NumberofElectrons = zeros( len(FermiLevelGuesses) ,dtype=float )
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for i in range( len(NumberofElectrons ) ) :
NumberofElectrons[ i ] = GetTotalElectrons(EDOS, FermiLevelGuesses[ i ] ,

Temperature)
XX=Vect2Matrix(FermiLevelGuesses ,NumberofElectrons−N0)
(mu, fx)=newton(0 ,XX, to l l=1e−3,nmax=20)
return mu

def TestFunction(x, t , c ,k) :
return interpolate . splev(x, ( t , c ,k))

def GetSingleTemperatureElectronicFreeEnergy(EDOS, Temperature) :
"""
For a given temperature , calculates the total Electronic Free Energy

Requires : an array with the electronic density of states and a temperature
Returns : a float with the electronic free energy
"""

mu = FindMu(EDOS, Temperature)
x=EDOS[: ,0]
y=EDOS[: ,1]∗FermiFunction(EDOS[: ,0] , mu, Temperature)
tck=interpolate . splrep (x,y, s=0,k=3)
DEf_mu=interpolate . splev(mu, tck)
i f abs(DEf_mu)<1e−3:

ElectronicFreeEnergy=0
return ElectronicFreeEnergy

kB = Constants .kB

ElectronicEnergy = GetElectronicEnergy(EDOS, Temperature , mu)
ElectronicEntropy = GetElectronicEntropy(EDOS, Temperature , mu)
ElectronicFreeEnergy = ElectronicEnergy − Temperature∗ElectronicEntropy
return ElectronicFreeEnergy

def GetElectronicEnergy(EDOS, Temperature , mu) :
"""

"""
x = EDOS[: ,0]
y = EDOS[: ,1]∗x∗FermiFunction(x, mu, Temperature)
z = EDOS[: ,0]∗EDOS[: ,1]
XX=Vect2Matrix(x,y)
integral1 = intfr2 (XX)
XX2=Vect2Matrix(x, z)
integral2 = intfr2 (XX2,min(XX2[: ,0]) ,mu)
Eel = integral1 − integral2
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return Eel

def GetElectronicEntropy(EDOS, Temperature , mu) :
"""
For a given temperature , calculates the electronic entropy

Requires : an array with the electronic density of states , a temperature
and the Fermi Level

Returns : a float with the total electronic entropy
"""
kB = Constants .kB
MinimumEnergy = mu− 20∗kB∗Temperature
MaximumEnergy = mu + 20∗kB∗Temperature
NewEnergy = linspace (MinimumEnergy, MaximumEnergy, 101)
tck = interpolate . splrep (EDOS[: ,0] , EDOS[: ,1] , s=0,k=3)
NewDOS = interpolate . splev(NewEnergy, tck)
f = FermiFunction(NewEnergy, mu, Temperature)
#DOS ∗ calculation of entropy per state
dummy1 = NewDOS∗( f∗log( f)+(1−f )∗log(1−f ))
XX=Vect2Matrix(NewEnergy,dummy1)
#Total electronic entropy
Sel =−kB∗intfr2 (XX)

return Sel

def GetElectronicFreeEnergy(Tmin, Tmax, dT, writeflag=False , plotflag=False ) :
"""
Over a range of temperatures , calls other functions to get the electronic
free energy for each temperature and then f i t s a curve to obtain the
temperature dependence of the electronic free energy

Requires : minumum, maximum temperatures and a delta temperature
Returns : an array with the temperature dependence of the electronic free

energy (harmonic approximation)
"""
i f os . path . i s f i l e ( ’DOS0’ ) :

EDOS =File2Array( ’DOS0’)
i f size (EDOS)==0:

sys . stderr . write ( ’Warning, DOS0 is empty ! ! . . . . \ n’ )
sys . exit ()

else :
sys . stderr . write ( ’Warning, DOS0 does not exist ! ! . . . . \ n’ )
sys . stderr . write ( ’Trying to generate i t . . . . \ n’ )
os . system( ’split_dos &>/dev/ null ’ )
os . system( ’sleep 1’ )
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sys . stderr . write ( ’split_dos command successful \n’ )
EDOS = File2Array( ’DOS0’)

i f size (EDOS)==0:
sys . stderr . write ( ’Error , DOS0 is empty ! ! . . . . \ n’ )
sys . exit ()

EDOS = File2Array( ’DOS0’)
(R,C)= shape(EDOS)
tck=interpolate . splrep (EDOS[: ,0] ,EDOS[: ,1] , s=0,k=3)
DEf=interpolate . splev(0 , tck)

NewTemperatures = linspace (Tmin, Tmax, 11)

ElectronicFreeEnergies = zeros (( len(NewTemperatures)) ,dtype=float )
for i in range( len(NewTemperatures) ) :

ElectronicFreeEnergies[ i ] = \
GetSingleTemperatureElectronicFreeEnergy(EDOS, NewTemperatures[ i ])

ElectronicFreeEnergies=mat(ElectronicFreeEnergies)

i f C>3:
EDOSb=zeros (( len(EDOS[: ,0]) ,2) ,dtype=float )
EDOSb[: ,0]=EDOS[: ,0]
EDOSb[: ,1]=abs(EDOS[: ,2])
tckb=interpolate . splrep (EDOSb[: ,0] ,EDOSb[: ,1] , s=0,k=3)
ElectronicFreeEnergiesb = zeros (( len(NewTemperatures)) ,dtype=float )
for i in range( len(NewTemperatures) ) :

ElectronicFreeEnergiesb[ i ] = \
GetSingleTemperatureElectronicFreeEnergy(EDOSb,

NewTemperatures[ i ])
ElectronicFreeEnergiesb = mat(ElectronicFreeEnergiesb)
ElectronicFreeEnergies = ElectronicFreeEnergies+ElectronicFreeEnergiesb

i f abs( linalg .norm(ElectronicFreeEnergies))<1e−5:
Temperatures=arange(Tmin,Tmax+dT,dT)
Output=zeros (( len(Temperatures) ,2) ,dtype=float )
Output[: ,0]=Temperatures
i f writeflag : # I f writeflag =True

Array2File(Output , ’ felec . dat ’ )
return Output

a = ones(( len(NewTemperatures) ,1) ,dtype=float )
b = mat(NewTemperatures∗∗2)
c = mat(NewTemperatures∗∗3)
fittingMatrix = mat(concatenate ((a ,b.T,c .T) ,1))
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pinvFel=linalg . pinv( fittingMatrix )

xf=pinvFel∗ElectronicFreeEnergies .T

NewElectronicFreeEnergies=fittingMatrix∗xf
Temperatures=arange(Tmin,Tmax+dT,dT)

a = ones(( len(Temperatures) ,1))
b = mat(Temperatures∗∗2)
c = mat(Temperatures∗∗3)
fittingMatrix = mat(concatenate ((a ,b.T,c .T) ,1))
FinalElectronicFreeEnergy=fittingMatrix∗xf

i f plotflag :
pylab . plot (NewTemperatures, ElectronicFreeEnergies ,NewTemperatures,

NewElectronicFreeEnergies ,Temperatures ,
FinalElectronicFreeEnergy)

pylab .show()

Output = zeros (( len(Temperatures) , 2))

Temperatures=array(Temperatures)

Output[: ,0] = Temperatures
Output[: ,1] = FinalElectronicFreeEnergy .T

i f writeflag : # I f writeflag =True
Array2File(Output , ’ felec . dat ’ )

return Output

i f __name__ == "__main__" :
i f ’−w’ in sys . argv :

writeflag = True
else :

writeflag = False

i f ’−p’ in sys . argv :
plotflag = True

else :
plotflag = False

Fel=GetElectronicFreeEnergy(1,100,1, writeflag=writeflag ,
plotflag=plotflag )

fileutils.py
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"""
Contains functions for reading and writing numpy arrays to and from
ascii text f i les
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.1$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

from os import path
from sys import exit , stderr
from scipy import io

def File2Array(filename ) :
i f path . i s f i l e (filename ) :

inFile = f i le (filename , ’ r ’ )
output = io . read_array( inFile )

else :
print filename
stderr . write ( ’Error , f i le does not exist ! ! . . . exiting . . . \ n’ )
exit ()

return output

def Array2File(data , filename ) :
outFile = f i le (filename , ’w’)
io . write_array(outFile , data , precision=12)
outFile . close ()

def ReadInputFile(filename ) :
params = {}
defaults = {’numberofposvolumes’ : 5, ’numberofnegvolumes’ :3 ,

’maxnegvolume’ : −0.02, ’maxposvolume’ : 0.04,
’minVCstrain’ : 0.0 , ’maxVCstrain’ : 0.04, ’numVCstrains’ : 5,
’er ’ : 8.0 , ’dr ’ : 0.05, ’maxtemp’ : 900, ’mintemp’ : 1e−5,
’dTemp’ : 5, ’pertnodes ’ : 4, ’QueueToUse’ : ’MX1’ , ’ fr ’ : 4.0 ,
’NumAtomsinSC’ : 32}

i f path . i s f i l e (filename ) :
inputfile = open(filename)
data = inputfile . readlines ()
inputfile . close ()
for line in data :

key = line . spl i t ()[0]
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value = line . spl i t ()[2]
i f value . isdigi t ( ) :

params[key] = float (value)
else :

params[key] = value
for parameter in defaults :

i f not params.has_key(parameter ) :
params[parameter] = defaults [parameter]

i f params[ ’mintemp’] == 0:
params[ ’mintemp’] = 1e−5

return params

Fvib.py

#! / usr /bin /env python

__author__ = "Mike Williams (michaeleric .williams@gmail .com) , \
and Raymundo Arroyave (raymundo@fastmail .fm)"

__version__ = "0.2$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

import Constants
import f i l eu t i l s
from numpy import ∗
import sys
import pylab
import os
import CollectData
#from CollectData import ∗
from NumericalMethods import ∗

def GetVibrationalFreeEnergy(Tmin, Tmax, dT, writeflag=False , plotflag=False ) :
"""
Calculates the vibrational contribution to the free energy
To be run in each volume directory

Requires : Numpy array with the Density of States
(read from an input fi le , not passed as an argument)
Tmin, Tmax, dT a boolean flag tell ing i t weather to write an output f i le

Returns : Vibrational free energy as a function of temperature
( in a 2d array)
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Writes an fvib . dat f i le in each volume directory
"""
h = Constants .h
kB = Constants .kB

#Read vdos . out
i f os . path . i s f i l e ( ’vdos . out ’ ) :

data = f i l eu t i l s . File2Array( ’vdos . out ’ )
i f size (data)==0:

sys . stderr . write ( ’Warning, vdos . out is empty ! ! . . . . ’ )
sys . exit ()

else :
#print ’%s does not exist!’%(filename)
sys . stderr . write ( ’Warning, vdos . out does not exist ! ! . . . . ’ )
sys . exit ()

VDOS = zeros (( len(data [ : ,0]) , 2))
counter = 0
for row in range( len(data [ : ,0 ] ) ) :

frequency = data[row,0]
states = data[row,1]
i f frequency >= 0:

VDOS[counter ][0] = frequency
VDOS[counter ][1] = states

counter = counter + 1

#remove negative frequencies
VDOS = VDOS[: counter+1 ,:]
Nu = VDOS[: ,0] #frequencies
Gv = VDOS[: ,1] #number of states
deltaNu = diff (Nu, 1, axis = 0).T
NuN = (Nu[1: ,] + Nu[0:−1])∗0.5
GvN = (Gv[1: ,] + Gv[0:−1])∗0.5
sumdegrees = sum(deltaNu ∗ GvN)
IntegratedNumberOfAtoms = sumdegrees/3
RealNumberOfAtoms = CollectData .CountAtoms()
ImaginaryStates = (RealNumberOfAtoms− IntegratedNumberOfAtoms)∗3

#create a temperature array
Temperatures = arange(Tmin, Tmax+dT, dT) .T
Fvib = zeros( len(Temperatures) ,dtype=float )
FvibImaginary = zeros( len(Temperatures) ,dtype=float )
for i in range( len(Temperatures ) ) :

constant = (h ∗ NuN)/(2 ∗ kB ∗ Temperatures[ i ])
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temporary = deltaNu∗GvN∗log(2∗sinh(constant ))
#overflow
i f sum(temporary) == Inf :

for j in range( len(constant ) ) :
i f constant [ j ] > 500:

temporary[ j ] = deltaNu[ j ]∗GvN[ j ]∗constant [ j ]

Fvib[ i ] = kB∗Temperatures[ i ]∗sum(temporary)
FvibImaginary[ i ] = ImaginaryStates∗(1−log(Temperatures[ i ] ) ) \

∗ kB/2 ∗ Temperatures[ i ]
TotalFvib = Fvib + FvibImaginary

i f plotflag :
pylab . plot (Temperatures , TotalFvib)
pylab .show()

Output = zeros (( len(Temperatures) , 2))
Output[: ,0] = Temperatures
Output[: ,1] = TotalFvib
i f writeflag : # I f writeflag =True

f i l eu t i l s . Array2File(Output , ’fvib . dat ’ )

return Output

def CalculateDebyeTemperature(VDOS,n) :
"""
Calculates the Debye Temperature from a given Phonon Density of States
based on the nth Moment of said DOS.
n=0 −> Entropy Debye Temperature
n=1 −> Average ny in vdos . out
n=2 −> Cp Debye Temperature
n=−2 −> Debye−Waller Debye Temperature
"""
h = Constants .h
kB = Constants .kB
n = float (n)

# Identify where negative frequencies are:
indexV=0
for i in range( len(VDOS[: ,0] ) ) :

i f VDOS[ i ,0]>=0:
indexV=i
break

VDOS=VDOS[indexV: , : ]
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i f n <0:
VDOS[: ,1]=VDOS[: ,1] / intfr2 (VDOS)
VDOS[0,0]=1e4
VDOS[0,1]=0
(DT_0,M0)= CalculateDebyeTemperature(VDOS,0)
nu_0 = DT_0∗kB/h
nu_min = nu_0∗0.5
nu_max = nu_0∗2
nu_i = linspace (nu_min,nu_max,31)
Integralb = zeros (( len(nu_i) ,2))
Integralb [: ,0]=nu_i
a = zeros (( len(VDOS[: ,0]) ,2))
a[: ,0] = VDOS[: ,0]
a[: ,1] = VDOS[: ,0]∗∗n
a[: ,1] = a[: ,1]∗VDOS[: ,1]
Integrala = intfr2 (a)
b = zeros (( len(VDOS[: ,0]) ,2))
for i in range( len(nu_i ) ) :

b[: ,0] = VDOS[: ,0]
b[: ,1] = VDOS[: ,0]∗∗2
b[: ,1] = 3.∗b[: ,1]∗(b[: ,0]∗∗n)
b[: ,1] = b[ : ,1] / ( nu_i[ i ]∗∗3.)
Integralb [ i ,1] = intfr2 (b)

Integralb [: ,1] = Integralb[:,1]− Integrala
(nu_n, fx) = newton(nu_0, Integralb , to l l=1e−6)
Moment = Integrala∗∗(1/n)

el i f n ==0:
VDOS[0,0]=1e−6
VDOS[: ,1]=VDOS[: ,1] / intfr2 (VDOS)
a = zeros (( len(VDOS[: ,0]) ,2))
a[: ,0] = VDOS[: ,0]
a[: ,1] = log(VDOS[: ,0])
a[: ,1] = a[: ,1]∗VDOS[: ,1]
Integrala = intfr2 (a)
nu_n = exp(1/3.+ Integrala )
Moment = exp( Integrala )

else :
VDOS[0,0]=1e−6
VDOS[: ,1]=VDOS[: ,1] / intfr2 (VDOS)

a = zeros (( len(VDOS[: ,0]) ,2))
a[: ,0] = VDOS[: ,0]
a[: ,1] = VDOS[: ,0]∗∗n
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a[: ,1] = a[: ,1]∗VDOS[: ,1]
Integrala = intfr2 (a)
nu_n = ((n+3.)/3.∗ Integrala )∗∗(1/n)
Moment = Integrala∗∗(1/n)

DebyeTemperature = h∗nu_n/kB

return (DebyeTemperature,Moment)

class PhononDOS:

def __init__( self , writeflag=False ,∗VDOS):

i f len(VDOS)==0:
i f os . path . i s f i l e ( ’vdos . out ’ ) :

VDOS = f i leu t i l s . File2Array( ’vdos . out ’ )
i f size (VDOS)==0:

sys . stderr . write ( ’Warning, vdos . out is empty ! ! . . . . ’ )
sys . exit ()

else :
sys . stderr . write ( ’Warning, vdos . out does not exist ! ! . . . . ’ )
sys . exit ()

self .VDOS = VDOS
self .TDM = zeros ((5 ,3) ,dtype=float )
# TDM is a Matrix with the Debye Temperatures and characteristic
#moments for n=−2,0,1,2 and 4.
self .CalculateTDM()
i f writeflag : # I f writeflag =True

f i l eu t i l s . Array2File( self .TDM, ’DTMom. dat ’ )
self .MaximumFrequency=max( self .VDOS[: ,0])
self .AverageFrequency=self .TDM[2 ,2]
self .EntropyDebyeTemperature=self .TDM[1 ,1]
self .AverageDebyeTemperature=self .TDM[2 ,1]
self .CpDebyeTemperature=self .TDM[3 ,1]
self .DebyeWallerDebyeTemperature=self .TDM[0 ,1]

def CalculateTDM( self ) :
i l i s t =[−2,0,1,2,4]
for i in range( len( i l i s t ) ) :

self .TDM[ i ,0]= i l i s t [ i ]
( self .TDM[ i ,1] , self .TDM[ i ,2]) = \

CalculateDebyeTemperature( self .VDOS, i l i s t [ i ])
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def PlotDOS( self ) :
pylab . plot ( self .VDOS[: ,0] ,VDOS[: ,1])
pylab . ylabel ( ’Frequency, Hz’ )
pylab . xlabel ( ’DOS’)
pylab . t i t l e ( ’Phonon DOS’)
pylab .show()

def get_Cp_from_DebyeTemperature(T,TD):
"""
Calculates the Specific heat from a Debye solid .
Requires : Temperature and Debye Temperature
Output: Specific heat
"""
kB=Constants .kB

i f TD/T>20.:
Cp=12.∗pi∗∗4/5.∗kB∗(T/TD)∗∗3.
return Cp

else :
xmin=1e−6;
xmax=TD/T;
x=linspace (xmin,xmax,200)
XX=zeros (( len(x) ,2) ,dtype=float )
XX[: ,0]=x
XX[: ,1]=(x∗∗4.)∗exp(x) / (exp(x)−1.)∗∗2.
Cp=9∗kB∗(T/TD)∗∗3.∗ intfr2 (XX)
return Cp

def get_DebyeTemperature(T,TargetCp,GuessDebyeTemperature) :
"""
Obtains the Debye Temperature of a Harmonic Solid so i t
has the target Specific heat
"""
DT_Test=linspace (30. ,GuessDebyeTemperature+400.,20)
XX=zeros (( len(DT_Test) ,2) ,dtype=float )

XX[: ,0]=DT_Test
i=range( len(XX[: ,0]))
for i in range( len(XX[: ,0] ) ) :

XX[ i ,1]=get_Cp_from_DebyeTemperature(T,XX[ i ,0])
XX[: ,1]=XX[:,1]−TargetCp
(DebyeTemperature, fx)=newton(GuessDebyeTemperature,XX, to l l=1e−10)
return DebyeTemperature
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i f __name__ == "__main__" :
i f ’−w’ in sys . argv :

writeflag = True
else :

writeflag = False

i f ’−p’ in sys . argv :
plotflag = True

else :
plotflag = False

i f ’−ph’ in sys . argv :
print "Testing Phonon Class and Methods"
VDOS = f i leu t i l s . File2Array( ’vdos . out ’ )
(DebyeTemperature,Moment)=CalculateDebyeTemperature(VDOS,0)
ph=PhononDOS( writeflag=True)
print DebyeTemperature,Moment
print ph.TDM
i f ’−p’ in sys . argv :

ph.PlotDOS()
el i f ’−db’ in sys . argv :

print "Testing Debye Temperature Calculations"
Cp=get_Cp_from_DebyeTemperature(50. ,300.)
print Cp
DebyeTemperature=get_DebyeTemperature(100, 6e−5, 600)
print DebyeTemperature

else :
#read parameter f i l e
inputparameterfile = ’ELCparams. in ’
params = f i leu t i l s . ReadInputFile( inputparameterfile )
maxtemp = float (params[ ’maxtemp’ ])
mintemp = float (params[ ’mintemp’ ])
dTemp = float (params[ ’dTemp’ ])
#perform operations
FVib = GetVibrationalFreeEnergy(1 , 1000, 1, writeflag = writeflag ,

plotflag=plotflag )

GetParams.py

"""
A method for reading an input f i le and preparing
a dictionary of input parameters
"""
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__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.3$"
__date__ = "$Date: November 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import os
def ReadInputFile(filename ) :

params = {}
defaults = {’numberofposvolumes’ :5 , ’numberofnegvolumes’ :3 ,

’maxnegvolume’:−0.02, ’maxposvolume’ :0.04 ,
’minVCstrain’ :0.0 , ’maxVCstrain’ :0.04 , ’numVCstrains’ :5 ,
’er ’ :8.0 , ’dr ’ :0.05 , ’ fr ’ :4.0 , ’maxtemp’:2000,
’mintemp’:1e−5, ’dTemp’ :1 , ’pertnodes ’ :4 ,
’PertPollTime’:300, ’relaxnodes ’ :1 ,
’RelaxPollTime’ :5 , ’QueueToUse’ : ’MX1’ , ’NumAtomsinSC’:32 ,
’StrainThermo’ : False}

#open input f i l e and read in specified parameters
i f os . path . i s f i l e (filename ) :

inputfile = open(filename)
data = inputfile . readlines ()
inputfile . close ()
for line in data :

key = line . spl i t ()[0]
value = line . spl i t ()[2]
i f value [0]. isdigi t () or value[0] == ’−’ :

params[key] = float (value)
else :

params[key] = value

#for each parameter not in the input f i l e use the default value
for parameter in defaults :

i f not params.has_key(parameter ) :
params[parameter] = defaults [parameter]

i f params[ ’mintemp’] == 0:
params[ ’mintemp’] = 1e−5

#the grid engine script requires integer numbers for the number of nodes
params[ ’pertnodes ’ ] = int (params[ ’pertnodes ’ ])
params[ ’relaxnodes ’ ] = int (params[ ’relaxnodes ’ ])
return params

NumericalMethods.py
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from scipy import ∗
from numpy import ∗

def newton(x0, data , to l l=1e−10,nmax=20):
tck=interpolate . splrep (data [: ,0] , data [: ,1] ,k=3,s=0)
err=to l l+1
nit=0
x=float (x0)
fx=interpolate . splev(x, tck)
dfx=interpolate . splev(x, tck , der=1)

while ( nit<nmax) and ( err>to l l ) :
i f (dfx==0):

err=to l l∗1e−10
else :

xn=x−fx /dfx
err=abs(xn−x)
x=xn
fx=interpolate . splev(x, tck)
dfx=interpolate . splev(x, tck , der=1)

nit=nit+1
fx=interpolate . splev(x, tck)
return (xn, fx)

def intfr2 (data ,∗args ) :
i f ( len(args)<2):

a=array(data [ : ,0 ] ) .min()
b=array(data [ : ,0 ] ) .max()

else :
a=args[0]
b=args[1]

x=array(data [ : ,0])
y=array(data [ : ,1])
for i in range( len(x) ) :

i f x[0]>a:
intmin=0
break

el i f x[ i]==a:
intmin=i
break

el i f ((a>x[ i ])and(a<x[ i +1])):
intmin=i+1
break

for i in range( len(x) ) :
i f x[ i]==b:
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intmax=i
break

el i f (b>x[ i ])and(b<x[ i +1]):
intmax=i
break

dx=diff (x[intmin : intmax+1],n=1,axis=0)
y0=y[intmin : intmax]
y1=y[intmin+1:intmax+1]

s=sum(dx∗0.5∗(y0+y1))

sa=0
sb=0

i f not( intmin == 0):
ya = y[intmin−1]+(y[intmin]−y[intmin−1])/(x[intmin]−x[intmin−1])∗\

(a−x[intmin−1])
sa=0.5∗(y[intmin]+ya)∗(x[intmin]−a)

i f not(intmax == len(x)−1):
yb = y[intmax]+(y[intmax+1]−y[intmax] ) / (x[intmax+1]−x[intmax])∗ \

(b−x[intmax])
sb=0.5∗(y[intmax]+yb)∗(b−x[intmax])

s=s+sa+sb

return s

def Vect2Matrix(∗args ) :

NC=len(args)
XX = zeros (( len(args [0]) ,1) ,dtype=float )

XX[: ,0]=args[0]
for i in range(NC−1):

XX2=zeros (( len(args [0]) , i +2),dtype=float )
XX2[: ,0: i+1]=XX
XX2[: , i+1]=args[ i+1]
del XX
XX=XX2
#print XX
del XX2

#print XX
return XX
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#============================================================================
def fprime(x,y) :
# Calculates the f i r s t numerical derivative

x=array(x)
y=array(y)

nx=len(x)
dx=diff (x,n=1,axis=0)
dfp=zeros ((nx,1))
coef_ffd=ForwardFirstDifference(dx,0)
coef_bfd=BackwardFirstDifference(dx,nx−1)
dfp[0] = dot(coef_ffd ,y[0:3])
dfp[−1] = dot(coef_bfd ,y[−3:])
j=arange(1 ,nx−1)
dfp[ j ]=CentralFirstDifference (y,dx, j )
return dfp

def ForwardFirstDifference(dx, i ) :
a=(1+dx[ i +1]/dx[ i ])∗dx[ i ] /dx[ i +1];
b=−dx[ i ] / (dx[ i+1]∗(1+dx[ i +1]/dx[ i ] ) ) ;
coef=mat(concatenate((−(a+b) , a ,b ) ,1)) /dx[ i ]
return coef

def BackwardFirstDifference(dx, i ) :
a=−(1+dx[ i−2]/dx[ i−1])∗dx[ i−1]/dx[ i−2];
b=dx[ i−1]/(dx[ i−2]∗(1+dx[ i−2]/dx[ i−1]));
coef=mat(concatenate ((b ,a ,−(a+b)) ,1)) /dx[ i−1]
return coef

def CentralFirstDifference (y,dx, i ) :
a=−dx[ i ] / (dx[ i−1]∗(dx[ i ] /dx[ i−1]+1));
b= dx[ i−1]/(dx[ i ]∗(dx[ i ] /dx[ i−1]+1));
fpc=(a∗y[ i−1] −(a+b)∗y[ i ]+b∗y[ i +1])/dx[ i−1];
return fpc

def IntegrateSampleData(x, y, xmin, xmax) :
"""
Fits a cubic spline to a set of data and integrates over a given range

Requires : 2 arrays , one of x and one of y values , 2 floats defining
the range over which to integrate

Returns : a float with the integrated value
"""
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tck = interpolate . splrep (x,y)
return interpolate . splint (xmin,xmax, tck)

i f __name__ == "__main__" :
x=array( linspace(0. ,10. ,10000))
x=mat(x)
x=x.T
x=array(x)
y=x∗∗2−5
data=ones(( len(x) ,2) ,dtype=float )
data=mat(data)
data[: ,0]=x
data[: ,1]=y
s=intfr2 (data ,2 ,8)[0]
print s
tck=interpolate . splrep (data [: ,0] , data [: ,1] ,k=3)
fx=interpolate . splev (1. , tck)
dfx=interpolate . splev (1. , tck , der=0)
(xf , fx)=newton(1.1 ,data , to l l=1e−15,nmax=30)
print xf , fx

CheckJobs.py

"""
Methods used in the calcultion of electronic free energies .
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)
__version__ = "0.3$"
__date__ = "$Date: 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams & Raymundo Arroyave"
__license__ = "Python"

import os

def CheckRelax(dirname) :
"""
Requires : complete path to directory where job is
"""
done = False
i f os . path . i s f i l e (dirname+’/OSZICAR’):

oszicar = open(dirname+’/OSZICAR’). readlines ()
for line in oszicar :

i f ’E0’ in line :
done = True
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return done

def CheckSSC(dirname) :
"""
Requires : complete path to directory where job is
"""
done = False
i f os . path . i s f i l e (dirname+’/INCAR’):

incar = open(dirname+’/INCAR’). readlines ()
for line in incar :

i f ’NSW = 0’ in line :
i f os . path . i s f i l e (dirname+’/OSZICAR’) \

and (os . path . getsize (dirname+’/OSZICAR’) > 0):
oszicar = open(dirname+’/OSZICAR’). readlines ()
for line2 in oszicar :

i f ’E0’ in line2 :
i f os . path .getmtime(dirname+’/OSZICAR’) \

> os . path .getmtime(dirname+’/INCAR’):
done = True

return done

def CheckExtractVasp(dirname) :
done = False
i f os . path . i s f i l e (dirname+’/ str_relax . out ’):

done = True
return done

def CheckFelec(dirname) :
done = False
i f os . path . i s f i l e (dirname+’/CONTCAR’):

i f os . path . i s f i l e (dirname+’/ felec ’):
i f os . path .getmtime(dirname+’/CONTCAR’) < \

os . path .getmtime(dirname+’/ felec ’):
done = True

return done

def CheckDirSetup(dirname) :
done = False
i f os . path . isdir (dirname) :

i f os . path . i s f i l e (dirname+’/INCAR’):
done = True

return done

controlvasp.py
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"""
Methods used to control VASP calculations for the
calculation of thermodynamic and elastic properties
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.3$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import os
import numpy
import filecmp
import sys
import shutil
import gridengine
import SuperCell
import CheckJobs
from ELCMethods import ∗
from VASPUtils import ∗
from GetParams import ∗
from CheckJobs import ∗
from ThermoMethods import ∗

params = ReadInputFile( ’ELCParams. in ’ )

#−−−−−−−−−−−−−−−−−−−−−Directory Names−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def StrainDirList (minstrain , maxstrain , numstrains , whichELC):

strains = numpy. linspace (minstrain∗100, maxstrain∗100, numstrains)
output = []
for i in strains :

i f whichELC == ’c44’ :
output .append( ’44str_ ’+str ( int ( i ) ) )

else :
output .append( ’11str_ ’+str ( int ( i ) ) )

return output

def VolDirList(Vmin, Vmax, n) :
Vmin = Vmin ∗ 100
Vmax = Vmax ∗ 100
vols = numpy. linspace (Vmin, Vmax, n)
output = []
for i in vols :

output .append( ’vol_’+str ( int ( i ) ) )
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return output

#−−−−−−−−−−−−−−−−−−−−−−−−−Complete scripts−−−−−−−−−−−−−−−−−−−−−−−−−−−
def C11_C12(params, commands) :

whichELC = ’c11’
volumedirectories = VolDirList(params[ ’maxnegvolume’ ] , \

params[ ’maxposvolume’ ] , \
params[ ’numberofposvolumes’ ] + \
params[ ’numberofnegvolumes’]−1)

straindirectories = StrainDirList (params[ ’minVCstrain’ ] , \
params[ ’maxVCstrain’ ] , params[ ’numVCstrains’ ] , \
whichELC)

parentdir = os .getcwd()
Thermo(params, commands)
os . chdir ( parentdir )
SetUpStrains(volumedirectories , straindirectories ,

params[ ’minVCstrain’ ] , params[ ’maxVCstrain’ ] ,
params[ ’numVCstrains’ ] , whichELC)

StrainCalcs (volumedirectories , straindirectories , params)
i f params[ ’StrainThermo’ ] :

SetUpELCPerturbations(params[ ’er ’ ] , params[ ’dr ’ ] ,
commands[ ’feleccommand’ ] ,
commands[ ’strainfitfccommand’ ] ,
volumedirectories , straindirectories ,
params[ ’NumAtomsinSC’ ])

ELCPerturbationCalculations(params[ ’er ’ ] , params[ ’dr ’ ] ,
commands[ ’feleccommand’ ] ,
commands[ ’strainfitfccommand’ ] ,
volumedirectories ,
straindirectories ,
params[ ’pertnodes ’ ] , params)

ELCPostProcessing(volumedirectories , straindirectories ,
commands[ ’coldcurvefitfc ’ ])

def C44(params, commands) :
whichELC = ’c44’
volumedirectories = VolDirList(params[ ’maxnegvolume’ ] , \

params[ ’maxposvolume’ ] , \
params[ ’numberofposvolumes’ ] + \
params[ ’numberofnegvolumes’]−1)

straindirectories = StrainDirList (params[ ’minVCstrain’ ] , \
params[ ’maxVCstrain’ ] , \
params[ ’numVCstrains’ ] , whichELC)

Thermo(params, commands)
SetUpStrains(volumedirectories , straindirectories ,
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params[ ’minVCstrain’ ] , params[ ’maxVCstrain’ ] ,
params[ ’numVCstrains’ ] , whichELC)

StrainCalcs (volumedirectories , straindirectories , params)

def SCC() :
InitialRelaxation ()
InitialSSC ()

def Thermo(params, commands) :
i f params[ ’numberofnegvolumes’ ] == 0:

numberofvolumes = params[ ’numberofposvolumes’ ]
else :

numberofvolumes = params[ ’numberofposvolumes’ ] + \
params[ ’numberofnegvolumes’]−1

volumedirectories = VolDirList(params[ ’maxnegvolume’ ] ,
params[ ’maxposvolume’ ] ,
numberofvolumes)

InitialRelaxation (params)
InitialSSC(params)
SetUpVolumes(volumedirectories , commands[ ’posvolumefitfccommand’ ] ,

commands[ ’negvolumefitfccommand’ ])
RelaxVolumes(volumedirectories , params)
VolumesSSC(volumedirectories , params)
VolumesPostProcess(volumedirectories , commands[ ’feleccommand’ ])
SetUpQHPerturbations(volumedirectories , commands[ ’posvolumefitfccommand’ ] ,

commands[ ’negvolumefitfccommand’ ])
pertdirs = QHPerturbationCalculations(volumedirectories ,

params[ ’pertnodes ’ ] , params)
QHExtractVasp( pertdirs )
i f not os . path . i s f i l e ( ’vol_0/vdos . out ’ ) :

os . system(commands[ ’coldcurvefitfc ’ ])

ELCMethods.py

"""
Specific scripts for running ELC strain calculations with VASP
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.4$"
__date__ = "$Date: November 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import os
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import gridengine
import SuperCell
import CheckJobs
from VASPUtils import ∗

def SetUpStrains(voldirs , straindirs , minstrain , maxstrain ,
numstrains , whichELC):

parentdirectory = os .getcwd()
badjobs = []
for i in voldirs :

for j in straindirs :
dirname = parentdirectory+’ / ’+i+’ / ’+j
i f not CheckJobs.CheckDirSetup(dirname) :

badjobs .append(dirname)
i f len(badjobs) > 0:

print ’Setting up strain directories ’

for directory in badjobs :
i f not os . path . isdir ( directory ) :

os .mkdir( directory )
os . chdir ( directory )
i f directory[−2] == ’−’ :

strain = float ( directory[−2:])∗.01
else :

strain = float ( directory[−1])∗.01
os . system( ’cp . . /POSCAR . ’ )
os . system( ’cp . . /POTCAR . ’ )
os . system( ’cp . . /INCAR . ’ )
ModifyInputFile( ’INCAR’ , ’ISIF’ , 2)
os . system( ’cp . . /KPOINTS . ’ )
StrainLattice ( strain , whichELC)
KpointsToGamma()

os . chdir (parentdirectory )
print ’Strain directories set up’

def StrainCalcs (voldirs , straindirs , params) :
badjobs = []
parentdirectory = os .getcwd()
for i in voldirs :

for j in straindirs :
dirname = parentdirectory+’ / ’+i+’ / ’+j
i f not CheckJobs.CheckSSC(dirname) :

badjobs .append(dirname)
JobIDs = []
for directory in badjobs :
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os . chdir ( directory )
queuefile = gridengine .CreateQueueFile( ’Strain ’ , ’00:30:00’ , 1,

params[ ’QueueToUse’ ])
print os .getcwd()
JobIDs.append(gridengine .SubmitJob(queuefile ))

i f len(badjobs) > 0:
print ’Performing Strain Calculations ’
gridengine .WaitForJobs(JobIDs)

os . chdir (parentdirectory )
print ’Strain calculations done’

def SetUpELCPerturbations(er , dr , feleccommand, strainfitfccommand , voldirs ,
straindirs , NumAtomsinSC):

parentdirectory = os .getcwd()
badjobs = []
for i in voldirs :

for j in straindirs :
i f not os . path . isdir (parentdirectory+’ / ’+i+’ / ’+j+’ /vol_0’ ) :

badjobs .append(parentdirectory+’ / ’+i+’ / ’+j )
for directory in badjobs :

print ’Setting up perturbations in %s ’%(directory )
thisstraindirectory = directory
perturbationdir = thisstraindirectory+’ /vol_0/p+’+str (dr)+\

’_’+str ( int ( er))+ ’_0’
os . system( ’cp ’+parentdirectory+’ /vasp .wrap. s tat ic ’+

thisstraindirectory+’ /vasp .wrap’ )
os . chdir ( thisstraindirectory )
os . system( ’extract_vasp ’ )
os . system( ’cp ’+thisstraindirectory+’ / str_relax . out ’

+thisstraindirectory+’ / s t r . out ’ )
os . system(feleccommand)
os . system(strainfitfccommand)
os . chdir ( perturbationdir )
os . system( ’str2ezvasp ’ )
os . system( ’ezvasp −n vasp . in ’ )
newer = SuperCell .VerifyNumAtoms( thisstraindirectory ,

perturbationdir , er , dr ,
NumAtomsinSC)

perturbationdir = thisstraindirectory + \
’ /vol_0/p+’+str (dr) + ’_’+str ( int (newer)) + ’_0’

os . system( ’str2ezvasp ’ )
os . system( ’ezvasp −n vasp . in ’ )

os . chdir (parentdirectory )
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print ’Perturbation directories set up’

def ELCPerturbationCalculations(er , dr , feleccommand, strainfitfccommand ,
voldirs , straindirs , nodes , params) :

badjobs = []
PertDirs = []
parentdirectory = os .getcwd()
for i in voldirs :

thisvolumedirectory = parentdirectory+’ / ’+i
for j in straindirs :

thisstraindirectory = thisvolumedirectory+’ / ’+j
PertDirs .append(SuperCell . GetPertDirList ( thisstraindirectory ))

for i in PertDirs :
i f not CheckJobs.CheckSSC( i [0]):

badjobs .append( i [0])
JobIDs = []
for directory in badjobs :

os . chdir ( directory )
queuefile = gridengine .CreateQueueFile( ’Pert ’ , ’10:00:00’ , nodes ,

params[ ’QueueToUse’ ])
shutil . copyfile ( directory+’ /KPOINTS’ , directory+’ / . . /KPOINTS’)
KpointsToGamma()
JobIDs.append(gridengine .SubmitJob(queuefile ))

i f len(JobIDs) > 0:
print ’Performing perturbation calculations ’
gridengine .WaitForJobs(JobIDs)

os . chdir (parentdirectory )

print ’Perturbation calculations done’

def ELCPostProcessing(voldirs , straindirs , fitfccommand) :
#check i f this step has been done
#by looking for an str_relax . out f i l e
PertDirs = []
badjobs = []
parentdirectory = os .getcwd()
for i in voldirs :

thisvolumedirectory = parentdirectory+’ / ’+i
for j in straindirs :

thisstraindirectory = thisvolumedirectory+’ / ’+j
PertDirs .append(SuperCell . GetPertDirList ( thisstraindirectory ))

for i in PertDirs :
i f not CheckJobs.CheckExtractVasp( i [0]):

badjobs .append( i [0])
i f len(badjobs) > 0:
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print ’Extracting data from perturbation calculations ’
for directory in badjobs :

print directory
os . chdir ( directory )
os . system( ’extract_vasp ’ )

#same routine but for final f i t f c command
badjobs = []
for i in voldirs :

thisvolumedirectory = parentdirectory+’ / ’+i
for j in straindirs :

PetDirs = []
thisstraindirectory = thisvolumedirectory+’ / ’+j
i f not (os . path . isdir ( thisstraindirectory ) \

and os . path . i s f i l e ( thisstraindirectory+’ /vol_0/vdos . out ’ ) ) :
badjobs .append( thisstraindirectory )

i f len(badjobs) > 0:
print ’Running final f i t fc command’
for directory in badjobs :

print directory
os . chdir ( directory )
os . system(fitfccommand)

os . chdir (parentdirectory )

print ’Perturbation post processing done’

gridengine.py

"""
Contains various functions for used to interact with the Sun Grid Engine
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.2$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import os
import time
import datetime
import CheckJobs

def WaitForJobs( JobIDlist , sleeptime=5):
"""
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Checks the queue status for a l i s t of job ID numbers and waits for
them to finish . This in essence freezes the program until the jobs are
done.

Requires : A l i s t of integer Job ID’s that have been assigned by the
SGE system

Returns : Nothing
"""

print ’Monitoring jobs ’
while 1:

alldone = 1
data = os .popen( ’qstat −u mew2454’)
lines = data . readlines ()
data . close ()
i f len( lines ) == 0:

print ’You have no jobs in queue! ’
break

else :
lines = lines [2:]
runningjobs = []
for row in lines :

job = int (row. spl i t ()[0])
i f job in JobIDlist :

runningjobs .append(job)
print ’Checking for the following jobs : %s ’%(runningjobs)
for i in JobIDlist :

i f i not in runningjobs :
index = JobIDlist . index( i )
del JobIDlist [index]
print ’Job %d is finished . ’%(i )

i f len( JobIDlist ) == 0:
print ’All Done! ’
break

time . sleep(sleeptime)

def CreateQueueFile(JobName, WallTime, NumberofNodes, QueueToUse) :
"""
Creates a queue f i le for use in the SGE

Requires : string − the name for the job
string − the walltime for the job in hh:mm: ss format
integer − the number of nodes to use
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Returns : a string with name of the queuefile
"""
lines = []
lines .append( ’#!/bin /sh \n’ )
lines .append( ’#$ −N ’+JobName+’ \n’ )
lines .append( ’#$ −l h_rt=’+WallTime+’ \n’ )
i f QueueToUse == ’MX1’ :

lines .append( ’#$ −pe mx−mpich ’+str (NumberofNodes)+’ \n’ )
lines .append( ’#$ −q %s .q’%QueueToUse+’ \n’ )
lines .append( ’#$ −cwd’+’ \n’ )
lines .append( ’#$ −v MPICH_PROCESS_GROUP=no’+’ \n’ )
lines .append( ’ /Users /Shared/mx/mpich−mx−1.2.7..4/bin /mpirun.ch_mx \
−−mx−ki l l 15 −np $NSLOTS−machinefile $TMPDIR/machines \
/Users /mew2454/vasp/bin /vasp .mpichmx_mac_intel_ifort_mkl >\
vasp . out ’+’ \n’ )

else :
lines .append( ’#$ −pe rshlammp∗ ’+str (NumberofNodes)+’ \n’ )
lines .append( ’#$ −cwd’+’ \n’ )
lines .append( ’#$ −q %s .q’%QueueToUse+’ \n’ )
lines .append( ’ /Users /Shared/m0u1971/bin /lam−7.1.1_underscore / bin / \

mpirun C−ssi rpi tcp /Users /mew2454/vasp/ bin /vasp . lam_g5_tcp >\
vasp . out ’+’ \n’ )

f = open(JobName+’ .q’ , ’w’)
f . writelines ( lines )
f . close ()
return JobName+’ .q’

def SubmitJob(queuename) :
"""
Submits job to the cluster and captures the Job ID in the queue system

Requires : String with name of queue f i le to submit
Returns : Job Id ( integer )
"""
command = ’qsub ’+queuename
j = os .popen(command)
line = j . readline ()
line = line . spl i t ()
JobID = int ( line [2])
return JobID

def ErrorCheck(jobtype , d i r l i s t ) :
"""
Checks a l i s t of directories for completion of a job ,
i f there was an error , i t l i s t s the directory and the step
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in the process where the error occured to a f i le ’pyvasp. err ’
"""
parentdir = os .getcwd()
badjobs = []
i f jobtype == ’relax ’ :

checkfunc = CheckJobs.CheckRelax
el i f jobtype == ’ stat ic ’ :

checkfunc = CheckJobs.CheckSSC
el i f jobtype == ’pert ’ :

checkfunc = CheckJobs.CheckSSC

for directory in d i r l i s t :
i f not checkfunc( directory ) :

badjobs .append(directory , jobtype , datetime . datetime .now())
i f len(badjobs) > 0:

outputfile = open( ’pyvasp. err ’ , w)
outputfile . writelines (badjobs)
outputfile . close ()
sys . exit ()

run_vasp.py

#! / usr /bin /env python
"""
Main program for controlling VASP calculations
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.2$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import sys
import os
from controlvasp import ∗
from GetParams import ReadInputFile

def ProcessArgs(args ) :
#get input parameters
process = ’none’
i f ’−thermo’ in args or ’−t ’ in args :

process = ’thermo’
i f ’−c11’ in args or ’−C11’ in args :

process = ’C11−C12’
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i f ’−ssc ’ in args :
process = ’ssc ’

i f ( ’−c44’ or ’−C44’) in args :
process = ’C44’

i f process == ’none’ :
print ’Please enter a valid process to run’
sys . exit ()

return process

i f __name__ == "__main__" :
#check for a vasp . in f i l e
i f not os . path . i s f i l e ( ’vasp . in ’ ) :

print ’No vasp . in f i le ! ’
sys . exit ()

#select a job to run and read in parameters
process = ProcessArgs(sys . argv)
i f os . path . i s f i l e ( ’ELCparams. in ’ ) :

inputfilename = ’ELCparams. in ’
else :

inputfilename = ’ ’
params = ReadInputFile( inputfilename)

#various commands to be used later
posvolumefitfccommand = ’ f i t fc −er=%f −ns=%f −ms=%f −dr=%f ’%\

(params[ ’er ’ ] , params[ ’numberofposvolumes’ ] ,
params[ ’maxposvolume’ ] , params[ ’dr ’ ])

i f params[ ’numberofnegvolumes’ ] > 0:
negvolumefitfccommand = ’ f i t fc −er=%f −ns=%f −ms=%f −dr=%f ’%\

(params[ ’er ’ ] , params[ ’numberofnegvolumes’ ] ,
params[ ’maxnegvolume’ ] , params[ ’dr ’ ])

else :
negvolumefitfccommand = ’ ’

strainfitfccommand = ’ f i t fc −er=%f −ns=%f −ms=%f −dr=%f −nrr ’%\
(params[ ’er ’ ] , 1, 0, params[ ’dr ’ ])

coldcurvefitfc = ’ f i t fc −f −fr=%f −T1=%f ’%(float (params[ ’ fr ’ ]) ,
float (params[ ’maxtemp’ ]))

feleccommand = ’felec −T1=%f ’%(float (params[ ’maxtemp’ ]))
commands = {’posvolumefitfccommand’ :posvolumefitfccommand,

’negvolumefitfccommand’ :negvolumefitfccommand,
’strainfitfccommand’ : strainfitfccommand ,
’coldcurvefitfc ’ : coldcurvefitfc ,
’feleccommand’ : feleccommand}

#execute the appropriate script
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i f process == ’C11−C12’ :
C11_C12(params, commands)

i f process == ’C44’ :
C44(params, commands)

i f process == ’thermo’ :
Thermo(params, commands)

i f process == ’SSC’ :
SSC()

SuperCell.py

"""
Collection of methods dealing with supercells
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.1$"
__date__ = "$Date: June 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import os
import sys

def CountAtoms( ) :
"""
Looks in the POSCAR fi le to get the number of atoms in a supercell
"""
i f os . path . i s f i l e ( ’POSCAR’ ) :

dummy = os .popen( ’cat POSCAR | head −n 6 | t a i l −n 1’)
data = dummy. readlines ()
data = data [0]. spl i t ()
integerl is t = []
for element in data :

integerl is t .append( int (element))
numberofatoms = sum( integerl is t )
return numberofatoms

else :
sys . exit ()

def VerifyNumAtoms( straindir , pertdir , er , dr , target ) :
"""
Ensures that the correct −er option was set in ATAT,
i f not , i t re−runs i t until i t finds the correct supercell size
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Requires : f i t fc command with necessary options
parameters dictionary used in f i t fc command
an integer of the target number of atoms

Returns : parameter dictionary with new er value
"""

os . chdir ( pertdir )
NAtoms = CountAtoms()
print NAtoms
while NAtoms < target :

er = er + .05
print ’ Incorrect # of atoms in supercell , attempting to fix %s ’%\

( pertdir )
os . chdir ( straindir )
os . system( ’rm−r vol_∗’ )
fitfccommand = ’ f i t fc −er=%f −ns=%f −ms=%f −dr=%f −nrr ’%(er , 1, 0, dr)
os . system(fitfccommand)
perturbationdir = GetPertDirList ( straindir )[0]
os . chdir ( perturbationdir )
os . system( ’str2ezvasp ’ )
os . system( ’ezvasp −n vasp . in ’ )
NAtoms = CountAtoms()
print NAtoms

return er

def GetPertDirList ( straindirpath ) :
per td i r l i s t = []
i f os . path . isdir ( straindirpath+’ /vol_0’ ) :

f i les = os . l i s td i r ( straindirpath+’ /vol_0’ )
for i in f i les :

i f os . path . isdir ( straindirpath+’ /vol_0/ ’+i ) and i [0] ==’p’ :
per td i r l i s t .append( straindirpath+’ /vol_0/ ’+i )

return per tdi r l i s t

def GetQHPertDirList( voldirs ) :
per td i r l i s t = []
parentdir = os .getcwd()
for i in voldirs :

directory = parentdir + ’ / ’ + i
f i les = os . l i s td i r ( directory )
for j in f i les :

i f os . path . isdir ( directory+’ / ’+j ) and j [0] ==’p’ :
per td i r l i s t .append( directory+’ / ’+j )

os . chdir ( parentdir )
return per tdi r l i s t
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ThermoMethods.py

"""
Methods for running thermodynamic calculations using VASP and ATAT
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.4$"
__date__ = "$Date: November 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import os
import shutil
import gridengine
import SuperCell
import CheckJobs
from VASPUtils import ∗

def InitialRelaxation (params) :
#check for a vasp . in f i l e
i f not os . path . i s f i l e ( ’vasp . in ’ ) :

print ’No vasp . in f i le ! Aborting . ’

#check i f this step has been done before
done = CheckJobs.CheckRelax(os .getcwd())

#i f not done already then proceed with calculations
i f not done:

print ’ Ini t ial izing ’
os . system( ’ezvasp −n vasp . in ’ )
queuefile = gridengine .CreateQueueFile( ’ InitialRelax ’ , ’20:00:00’ ,

params[ ’relaxnodes ’ ] ,
params[ ’QueueToUse’ ])

JobIDs = []
JobIDs.append(gridengine .SubmitJob(queuefile ))
gridengine .WaitForJobs(JobIDs)
ArchiveFiles( ’relax ’ )

print ’ In i t ia l relaxation done. ’

def InitialSSC(params) :
# Check i f this step has been done before:
# I f CONTCAR and POSCAR are the same and E0 is in
# OSZICAR and OSZICAR timestamp is newer than CONTCAR
done = CheckJobs.CheckSSC(os .getcwd())
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#i f not done already then proceed with this step
i f not done:

print ’Performing SSC on in i t i a l structure . ’
shutil . copyfile ( ’CONTCAR’ , ’POSCAR’)
ModifyInputFile( ’INCAR’ , ’NSW’ , 0)
ModifyInputFile( ’INCAR’ , ’ISIF’ , 2)
ModifyInputFile( ’INCAR’ , ’ISMEAR’ , −5)
ModifyInputFile( ’INCAR’ , ’IBRION’ , −1)
JobIDs = []
queuefile = gridengine .CreateQueueFile( ’InitialSSC ’ , ’20:00:00’ ,

params[ ’relaxnodes ’ ] ,
params[ ’QueueToUse’ ])

JobIDs.append(gridengine .SubmitJob(queuefile ))
gridengine .WaitForJobs(JobIDs)
ArchiveFiles( ’ s tat ic ’ )

print ’ In i t ia l SSC done. ’

def SetUpVolumes(volumedirectories , posfitfccommand, negfitfccommand) :
# Check i f this step has been done before
# Go into each volume directory and make sure there is an INCAR f i l e
parentdirectory = os .getcwd()
badvoldirs = []
done = False
for i in volumedirectories :

thisvolume = parentdirectory+’ / ’+i
i f not os . path . i s f i l e (thisvolume+’ / s t r . out ’ ) :

badvoldirs .append(thisvolume)
i f len(badvoldirs ) == 0:

done = True

#i f not done already then proceed with this step
i f not done:

print ’Setting up volume directories ’
ArchiveFiles( ’ s tat ic ’ )
for i in [ ’CONTCAR’ , ’OSZICAR’ , ’OUTCAR’ , ’INCAR’ ] :

i f not os . path . i s f i l e ( i+’ . s ta t ic ’ ) :
shutil . copyfile ( i , i+’ . s ta t ic ’ )

CreateWrapperFiles()
os . system( ’cp vasp .wrap. relax vasp .wrap’ )
os . system( ’extract_vasp ’ )
shutil . copyfile ( ’ str_relax . out ’ , ’ s t r . out ’ )
os . system(posfitfccommand)
os . system(negfitfccommand)
os . system( ’rm−r vol_−0’)
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os . chdir (parentdirectory )
print ’Volume directories set up’

def RelaxVolumes(voldirs , params) :
parentdir = os .getcwd()
badjobs = []
volumeJobIDs = []
for i in voldirs :

directory = parentdir+’ / ’+i
i f not CheckJobs.CheckRelax( directory ) :

badjobs .append( directory )
i f len(badjobs) > 0:

print ’Relaxing volume directories ’
for j in badjobs :

os . chdir ( j )
os . system( ’str2ezvasp ’ )
os . system( ’ezvasp −n vasp . in ’ )
queuefile = gridengine .CreateQueueFile( ’Vol−Relax’ , ’20:00:00’ , 4,

params[ ’QueueToUse’ ])
volumeJobIDs.append(gridengine .SubmitJob(queuefile ))

i f len(volumeJobIDs) > 0:
gridengine .WaitForJobs(volumeJobIDs,

sleeptime=params[ ’RelaxPollTime’ ])
ArchiveFiles( ’relax ’ )

os . chdir ( parentdir )
print ’Volume directories relaxed . ’

def VolumesSSC(voldirs , params) :
badjobs = []
JobIDs = []
parentdir = os .getcwd()
for i in voldirs :

directory = parentdir+’ / ’+i
i f not CheckJobs.CheckSSC( directory ) :

badjobs .append( directory )
i f len(badjobs) > 0:

print ’Performing SSC calculations ’
for j in badjobs :

os . chdir ( j )
os . system( ’cp CONTCARPOSCAR’)
ModifyInputFile( ’INCAR’ , ’NSW’ , 0)
ModifyInputFile( ’INCAR’ , ’ISIF’ , 2)
ModifyInputFile( ’INCAR’ , ’ISMEAR’ , −5)
ModifyInputFile( ’INCAR’ , ’IBRION’ , −1)
queuefile = gridengine .CreateQueueFile( ’Vol−SSC’ , ’20:00:00’ , 4,
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params[ ’QueueToUse’ ])
JobIDs.append(gridengine .SubmitJob(queuefile ))

i f len(JobIDs) > 0:
gridengine .WaitForJobs(JobIDs, sleeptime=params[ ’RelaxPollTime’ ])
ArchiveFiles( ’ s tat ic ’ )

os . chdir ( parentdir )
print ’Volume SSC calculations done’

def VolumesPostProcess(voldirs , feleccommand) :
# Check by looking for str_relax . out and felec in each volume directory
badjobs = []
parentdir = os .getcwd()
for i in voldirs :

i f not (CheckJobs.CheckFelec( i ) and CheckJobs.CheckExtractVasp( i ) ) :
badjobs .append( parentdir+’ / ’+i )

#i f not done already then proceed with this step
i f len(badjobs) > 0:

print ’Post processing volume directories ’
os . system( ’cp vasp .wrap. s tat ic vasp .wrap’ )
for i in badjobs :

print ’Processing %s ’%(i )
os . chdir ( i )
os . system( ’extract_vasp ’ )
os . system(feleccommand)
ArchiveFiles( ’ s tat ic ’ )

os . chdir ( parentdir )
print ’Volume directories processed and felec run sucessfully ! ’

def SetUpQHPerturbations(volumedirectories , posfitfccommand, negfitfccommand) :
# Check i f this step has been done before
# Go into each volume directory and make sure there is an INCAR f i l e
parentdirectory = os .getcwd()
pertdirs = SuperCell .GetQHPertDirList(volumedirectories)
done = False
i f len( pertdirs ) > 0:

done = True

i f not done:
print ’Setting up perturbation directories ’
os . system( ’cp vasp .wrap. s tat ic vasp .wrap’ )
os . system(posfitfccommand)
os . system(negfitfccommand)
os . system( ’rm−r vol_−0’)
os . system( ’ foreachfile wait foreachfile wait str2ezvasp ’ )
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os . system( ’ foreachfile wait foreachfile wait ezvasp −n vasp . in ’ )
os . chdir (parentdirectory )
print ’Perturbation directories set up’

def QHPerturbationCalculations(volumedirectories , nodes , params) :
parentdirectory = os .getcwd()
JobIDs = []
per tdi r l i s t = SuperCell .GetQHPertDirList(volumedirectories)
for directory in per tdi r l i s t :

i f not CheckJobs.CheckSSC( directory ) :
print directory
os . chdir ( directory )
queuefile = gridengine .CreateQueueFile( ’QH−Pert ’ , ’1000:00:00’ ,

nodes , params[ ’QueueToUse’ ])
KpointsToGamma()
JobIDs.append(gridengine .SubmitJob(queuefile ))

i f len(JobIDs) > 0:
print ’Performing Quasi−harmonic perturbation calculations ’
gridengine .WaitForJobs(JobIDs, sleeptime=params[ ’PertPollTime’ ])

os . chdir (parentdirectory )
gridengine .ErrorCheck( ’pert ’ , per td i r l i s t )
print ’Quasi−harmonic perturbation calculations done’
return per td i r l i s t

def QHExtractVasp( pertdirs ) :
parentdir = os .getcwd()
for i in pertdirs :

i f not os . path . i s f i l e ( i+’ / str_relax . out ’ ) :
os . chdir ( i )
os . system( ’extract_vasp ’ )

os . chdir ( parentdir )

VASPUtils.py

"""
Various u t i l i t i e s for modifying VASP input f i les for ELC calculations
"""

__author__ = "Mike Williams (michaeleric .williams@gmail .com)"
__version__ = "0.4$"
__date__ = "$Date: November 2007 $"
__copyright__ = "Copyright (c) 2007 Mike Williams"
__license__ = "Python"

import numpy
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import os
import shutil

def StrainLattice ( strain , whichELC):
"""
Distorts la t t ice vectors in the parent directory ’s CONTCAR fi le
and writes them out as a POSCAR fi le in the current directory

Requires : float of strain value
Returns : nothing
"""

inputfile = open(" . . /CONTCAR" , ’ r ’ )
data = inputfile . readlines ()
inputfile . close ()
#pull out lat t ice vectors and put in matrix
latticevectors = numpy. identity (3 , float )
a = data [2]. spl i t (" ")
b = data [3]. spl i t (" ")
c = data [4]. spl i t (" ")
#eliminate null spaces
for x in [a ,b, c ] :

while ’ ’ in x:
x.remove( ’ ’ )

d = a+b+c
#convert elements of l i s t to matrix of floats (allows matrix operations)
index = 0
for x in range(3):

for y in range(3):
latticevectors [x,y] = float (d[index])
index = index+1

latticevectors = numpy.mat( latticevectors )
#distort lat t ice vectors with matrix operations
I = numpy.mat(numpy. identity (3))
e = numpy.mat(numpy. zeros ((3 ,3)))
i f whichELC == ’c11’ :

e[0 ,0] = strain
e[1 ,1] =−strain
e[2 ,2] = strain∗strain/(1−strain∗strain )

el i f whichELC == ’c44’ : #taken from Mehl (23) & (31)
e[0 ,1] = strain /2
e[1 ,0] = strain /2
e[2 ,2] = strain∗∗2./(4−strain∗∗2.)
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B = I+e
A= latticevectors ∗ B

#write distorted lat t ice vectors out to POSCAR f i l e
D = numpy. array(A)
outputfile = open("POSCAR" , ’w’)
#copy f i r s t 2 lines
outputfile . writelines (data [0])
outputfile . writelines (data [1])
#write new latt ice vectors
for row in D:

for item in row:
outputfile . write (numpy. array2string (item))
outputfile . write ( ’ \ t ’ )

outputfile . write ( ’ \n’ )
#write remaining data
outputfile . writelines (data [5:])
outputfile . close ()

def KpointsToGamma() :
"""
Changes a KPOINTS fi le from Monkhost Pack scheme to Gamma Centered scheme

Requires : nothing
Returns : nothing
"""
inputfile = open( ’KPOINTS’ , ’ r ’ )
data = inputfile . readlines ()
inputfile . close ()
outputfile = open( ’KPOINTS’ , ’w’)
data[2] = ’Gamma\n’
outputfile . writelines (data)

def ModifyInputFile(filename , parameter , newvalue) :
"""
Takes an input f i le and changes one of the input parameter ’s value

Requires : a string − the parameter to change
the new value − can be a string or integer

Returns : Nothing
"""
f = open(filename , ’ r ’ )
data = f . readlines ()
f . close ()
f = open(filename , ’w’)
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exists = 1
for line in range( len(data ) ) :

i f data[ line ] . find (parameter) == 0:
data[ line ] = parameter+’ = ’+str (newvalue)+’ \n’
exists = 0

f . writelines (data)
i f exists == 1:

f . close ()
f = open(filename , ’a’ )
f . writelines (parameter+’ = ’+str (newvalue)+’ \n’ )

def CreateWrapperFiles ( ) :
"""
Creates the vasp .wrap, vasp .wrap. s tat ic and vasp .wrap. relax
f i les for use by f i t fc
"""
shutil . copyfile ( ’vasp . in ’ , ’vasp .wrap. relax ’ )
shutil . copyfile ( ’vasp . in ’ , ’vasp .wrap. s tat ic ’ )
for i in [ ’vasp .wrap. relax ’ , ’vasp .wrap. s tat ic ’ ] :

inputfile = open( i , ’ r ’ )
data = inputfile . readlines ()
inputfile . close ()
badlinenumber = data . index( ’ [POSCAR]\n’ )
data = data [ :badlinenumber]
outputfile = open( i , ’w’)
outputfile . writelines (data)
outputfile . close ()

ModifyInputFile( ’vasp .wrap. relax ’ , ’ISIF’ , 4)
ModifyInputFile( ’vasp .wrap. s tat ic ’ , ’ISIF’ , 2)
ModifyInputFile( ’vasp .wrap. s tat ic ’ , ’IBRION’ , −1)
ModifyInputFile( ’vasp .wrap. s tat ic ’ , ’NSW’ , 0)

def ArchiveFiles( relaxorstatic ) :
"""
Copies 4 essential f i les to ∗. s ta t ic or ∗. relax for archiving purposes
"""

i f relaxorstatic == ’relax ’ :
for i in [ ’CONTCAR’ , ’OSZICAR’ , ’OUTCAR’ , ’INCAR’ ] :

i f not os . path . i s f i l e ( i+’ . relax ’ ) :
os . system( ’cp %s %s . relax ’%(i , i ))

else :
for i in [ ’CONTCAR’ , ’OSZICAR’ , ’OUTCAR’ , ’INCAR’ ] :

i f not os . path . i s f i l e ( i+’ . s ta t ic ’ ) :
os . system( ’cp %s %s . stat ic ’%(i , i ))
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