Show simple item record

dc.creatorKumar, Saurabh
dc.date.accessioned2012-06-07T23:15:31Z
dc.date.available2012-06-07T23:15:31Z
dc.date.created2002
dc.date.issued2002
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-K82
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 79-83).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractNumerical simulations of mixing using passive and active techniques are performed. For passive mixing, numerical modeling of a micro-fluidic device, build by Holden and Cremer, was performed. The micro-fluidic device consists of a Y-junction that allows inflow of two different species of fluid into a main-channel. The main-channel eventually splits into eleven smaller output micro-channels. This device enables control of molecular diffusion from one fluid stream into the other by regulating the flow rate. Hence, output channels exhibit predetermined concentration values, which allow concentration dependent chemistry experiments in each output channel. Convective diffusive transport in this micro mixer is studied numerically and theoretically. Our model prediction are compared with the experimental data. Numerical simulations of a peristaltically driven micro mixer is studied as a function of the travelling wave amplitude and the Reynolds number. First the numerical scheme was verified for small deformation cases for moderate and large Reynolds numbers. Kinematics of large deformation conditions are studied for various Reynolds numbers.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleNumerical simulation of micro-fluidic passive and active mixersen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access