Show simple item record

dc.creatorAl-Solami, Bandar
dc.date.accessioned2012-06-07T23:11:14Z
dc.date.available2012-06-07T23:11:14Z
dc.date.created2002
dc.date.issued2002
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-A427
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 54-55).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThe objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to catalyst deactivation. A fixed bed reactor was used to conduct this investigation. A series of runs were conducted using the Engelhard catalyst with fixed operating conditions. The only variable was the time on stream of each run. Six experiments were conducted starting with one hour time on stream up to six hours with an increment of one hour. In each experiment data on product flow rate, reactor temperature, and product distribution were collected. And at the end of each run, the amount of coke deposited on the catalyst was measured. Hydrogen concentration in the product distribution decreased as a function of time on stream. On the other hand, low and high end hydrocarbons increased with time on stream. The coke deposition kinetics for the catalyst at the process operating conditions can be estimated using Voorhies' empirical formula. The coke profile inside the reactor showed that the coke reaction follows a parallel mechanism to the main reaction. Ethylene was found to be the main coke precursor; however, the participation of methane in the coke reaction could not be neglected.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectchemical engineering.en
dc.subjectMajor chemical engineering.en
dc.titleCoke profile and effect on methane/ethylene conversion processen
dc.typeThesisen
thesis.degree.disciplinechemical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access