Show simple item record

dc.creatorFeng, Dazi
dc.date.accessioned2012-06-07T23:04:06Z
dc.date.available2012-06-07T23:04:06Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-F39
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionThesis (M.S.)--Texas A&M University, 2001.en
dc.descriptionIncludes bibliographical references (leaves 33-39).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractWe have applied the synthetic-aperture method to linear-scanning microwave-induced thermoacoustic tomography in biological tissues. A non-focused ultrasonic transducer was used to receive thermoacoustic signals, to which the delay-and-sum algorithm was applied for image reconstruction. We greatly improved the lateral resolution of images and acquired a clear view of the circular boundaries of buried cylindrical objects, which could not be obtained in conventional linear-scanning microwave-induced thermoacoustic tomography (LMTT) based on focused transducers. Two microwave sources, which had frequencies of 9 GHz and 3 GHz, respectively, were used in the experiments for comparison. The 3-GHz system had a much larger imaging depth but a lower signal-noise ratio than the 9-GHz system.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectbiomedical engineering.en
dc.subjectMajor biomedical engineering.en
dc.titleMicrowave-induced thermoacoustic tomography: reconstruction by synthetic apertureen
dc.typeThesisen
thesis.degree.disciplinebiomedical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access