Show simple item record

dc.creatorEberle, David Michael
dc.date.accessioned2012-06-07T23:03:57Z
dc.date.available2012-06-07T23:03:57Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-E244
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaf 62).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractIn recent years, the modeling of physical phenomena has become an integral part of computer applications in diverse areas from engineering to entertainment. This thesis focuses on a particular aspect of this modeling, the simulation of rigid bodies. Complicated simulations require the development of sophisticated collision detection systems and numerical techniques. Previous work in the field has almost exclusively been restricted to geometries that are convex or a union of convex pieces. One of the goals of this thesis is overcoming this restriction. Collision detection is only one of the many hurdles which arise in simulating collisions between rigid bodies. To calculate the appropriate response of colliding bodies, the point of contact between the bodies must be determined. Methods of contact point determination will also be discussed. This thesis also explores the issues of resolving simultaneous collisions and resting contact via the formulation of a linear complementarity problem (LCP). This method maintains the physical validity of the simulator, unlike penalty methods which are often used. Impulse based methods for resting contacts have been proposed and implemented by others, but cannot simulate simple structures, such as a stack of blocks. The LCP formulation allows these types of configurations, which are successfully simulated in this thesis. The culmination of this thesis is the development of a rigid body simulator. The numerical methods and algorithms employed are discussed and are compared to alternative techniques. The intention is that the reader use this thesis and its references to ease the process of writing a new simulator and gain insight into the methods used.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmathematics.en
dc.subjectMajor mathematics.en
dc.titleNumerical techniques of rigid body simulationen
dc.typeThesisen
thesis.degree.disciplinemathematicsen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access