Show simple item record

dc.creatorClancy, Terry L
dc.date.accessioned2012-06-07T22:51:56Z
dc.date.available2012-06-07T22:51:56Z
dc.date.created1998
dc.date.issued1998
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1998-THESIS-C534
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references: p.12.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThermoelectric cooling or heating can be used to drive materials to specified temperatures. By way of the Peltier effect, heat is liberated or absorbed when a current flows across a 'unction of two dissimilar conductors. A time history of the temperature cycle can be used to correlate a thermal response as a function of electrical current and initial temperature. In this thesis, the thermoelectric cooling and heating of copper and mercury, in conjunction with bismuth-telluride (Bl2Te3) semiconductors, are measured and compared against a I-D approximation developed by Bhattacharyya, Lagoudas, Waiig, and Kinra.' Based on results published in the aforementioned article and unpublished work of the author, refinements in the experimental setup are meant to further insure that the I-D assumptions are followed as accurately as possible. The improvements however are dwarfed by possible misconceptions assumed in the physics of the setup.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectaerospace engineering.en
dc.subjectMajor aerospace engineering.en
dc.titleTransient cooling and heating via a bismuth-telluride thermoelectric deviceen
dc.typeThesisen
thesis.degree.disciplineaerospace engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access