Show simple item record

dc.creatorMulchandani, Rajesh R.
dc.date.accessioned2012-06-07T22:49:52Z
dc.date.available2012-06-07T22:49:52Z
dc.date.created1997
dc.date.issued1997
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1997-THESIS-M85
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references: p.125-129.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractAn approach for three dimensional Therinohydrodyiiamic analysis of multi-lobed journal bearings is presented. The generalized Reynolds equation solution yields the Dressure distribution in the axial and circumferential directions. The energy equation is three dimensional and takes into account the convection and dissipation in axial and circumferential directions. Heat conduction through the fluid film ill axial, circumferential and cross-film direction is considered. Variation of viscosity in all three directions is considered. A finite element method is used to solve the associated partial differential equations and the associated boundary conditions. In order to obtain a stable and realistic temperature distribution, three dimensional finite element upwinding technique is developed and incorporated whenever the convective term is dominant. Reynolds boundary condition is used to determine the cavitation boundary and thermal cavitation model is applied in that region. Location and magnitudes of maximum temperature in the bearing and the pressure profiles are obtained and compared to existing data in literature. Comparison is also irlade between results obtained using optimal and full upwinding versus no upwinding. Dynamic coefficients of bearing using variable viscosity model are derived and compared to isoviscous results-Thermohydrodynamic simulation of multi-lobed journal bearings is presented using more realistic three dimensional boundary conditions on the model.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleThree dimensional thermohydrodynamic analysis of multi-lobed bearingsen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access