Show simple item record

dc.creatorKatz, David Jonathan
dc.date.accessioned2012-06-07T22:49:14Z
dc.date.available2012-06-07T22:49:14Z
dc.date.created1997
dc.date.issued1997
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1997-THESIS-K38
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractNatural gas samples were collected for geochemical analyses from Upper Cretaceous and Tertiary strata of the Piceance basin in western Colorado to: 1) determine the origin of gases (i.e., microbial versus thermogenic), 2) determine the thermogenic source rock(s) for the gas-rich Williams Fork Formation, and 3) assess the nature of gas migration. Mud logging gases were sampled approximately every 60 m between 350 and 2800 m and analyzed for "C compositions and CI/C,-3 ratios. Samples collected from low gas content intervals above 1950 m define two parallel trends of increasing "Cc, content with depth. Data from the first trend are based on eighteen analyses and range from-69.9 to-38.3%o (R 2 = 0.92). These data suggest a microbial and mixed microbial/thermogenic origin for methane. Only one sample from above 1950 m contained sufficient amounts of C2for isotopic analysis (813 CC2 =-27.0%o at 1718 m). Data from the second trend are based on seven analyses and are offset by approximately +20%o compared with the primary trend at comparable depths. These data range from-65.0 to-38.5%0 (R' = 0.84). 813c ci and C,/CI-3data from both trends are similar when viewed on a crossplot, thus suggesting that large-scale, vertical gas migration has occurred. Migration was probably aided by fractures that formed during maximum burial and peak gas generation. Except for one sample collected at 1718 m, "CC2compositions above 1950 m were not determined due to insufficient sample sizes. Below 1950 m, gas contents abruptly increase and approach 10-4' gas units. These gases have "C compositions indicative of thermogenic origin. Gases between 1950 and 2450 m have relatively uniform geochemistries (8"Cc, =-39.9 0︢.3%ol 613C C2 =-27.4 I︢.i%ol CI/Cl-3 = 0-91 0︢.03), and are chemically distinct and therefore Renetically different from gases between 2450 and 2791 M (513C ci =-37.9 +-O.2%og 813C C2 =-26.4 0︢.5%09 CI/Cl-3 = 0.88 0︢.01). Gases of the latter group were probably derived from coalbeds that comprise the Cameo Group, as abundant coals are found between 2450 and 2630 m. Only three thin coalbeds occur within the Coal Ridge Group between 1950 and 2450 m, so gases from this interval were probably derived from interbedded shales. Core and cuttings samples were also collected and sealed in cans from several intervals for geochemical analyses. Canned methanes at or above 858 m are "C-enriched by 13 to 33%o compared with logging methanes at equivalent intervals. Below 1934 m, however, 813C ci values for core and cuttings are comparable to logging gas values. This observation suggests that 813 Cc, discrepancies above 858 m are related to low gas contents in the core and cutting samples. Therefore, geochemical data from core and cuttings were not used to assess migration or to interpret gas origin.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectgeology.en
dc.subjectMajor geology.en
dc.titleOrigin of gaseous hydrocarbons from Upper Cretaceous and Tertiary strata in the Piceance basin, western Coloradoen
dc.typeThesisen
thesis.degree.disciplinegeologyen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access