Show simple item record

dc.creatorGilmore, Matthew Scott
dc.date.accessioned2012-06-07T22:44:40Z
dc.date.available2012-06-07T22:44:40Z
dc.date.created1996
dc.date.issued1996
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1996-THESIS-G55
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThe role of environmental variables such as vertical wind shear and updraft Convective Available Potential Energy (CAPE) in creating supercell thunderstorms has been well established. However, there are currently no acceptable indices that can distinguish between tornadic and non-tornadic supercell environments. Recent observational studies have shown however that non-tornadic supercells tend to be either dominated by or lacking in outflow. One factor influencing downdraft and outflow strength is the dryness of the midlevel air. Rain that falls through drier air results in greater evaporative cooling and negative bouyancy of the air. The maximum kinetic energy increase a downdraft can experience due to evaporative cooling is represented within an index called Downdraft CAPE (DCAPE). Using a non hydrostatic cloud model, supercells are simulated in environments differing only by the dryness of the midlevel air (or DCAPE). Results indicate that storms with too much DCAPE (in high CAPE and weak vertical wind shear environments) have low-level outflow that propagates faster than the midlevel mesocyclone resulting in a weaker updraft and a weak low-level mesocyclone. When the DCAPE is small, a strong lowlevel mesocyclone is produced. This study overwhelmingly suggests that an index estimating the potential downdraft strength must be included in tornado forecasts if delineating between tornadic and non-tornadic supercells is to ever be achieved. However, before it is used in an operational setting, DCA-PE needs to be studied in conjunction with other supercell indices. DCA-PE also needs further calibration with observed and modeled supercell downdrafts.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmeteorology.en
dc.subjectMajor meteorology.en
dc.titleThe influence of DCAPE on supercell dynamicsen
dc.typeThesisen
thesis.degree.disciplinemeteorologyen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access