Show simple item record

dc.creatorNo, Eun-Gyu
dc.date.accessioned2012-06-07T22:37:46Z
dc.date.available2012-06-07T22:37:46Z
dc.date.created1994
dc.date.issued1994
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1994-THESIS-N739
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractProlonged exposure of plants to ozone inhibits growth and development and produces visible signs of damage. Within a few hours of exposure, certain biochemical alterations have been observed with the induction of several stress-related proteins. accumulation of several polya RNAS. CDNA clones derived from five different polya RNAs which accumulate in ozone-stressed shrub leaves were isolated by differential screening methods. Alteration in gene expression which occurs with ozone, sulfur dioxide and water deficit were examined, and those cDNAs were sequenced. Clone 012-1, hybridized with three RNA species, is initially induced in response to both ozone and water deficit stress, but is repressed to prolonged ozone and sulfur dioxide exposure. Clone 012-1 has strong homology with small subunit RRNA. Northern blots suggest that transcripts hybridized to 012-1 are a naked species (about 1.45 kb) and are subfragments (1.0 and 0.45 kb) of 1.4 kb species. 0112A-3 showed an increase in response to two pollutants, but not to water deficit. 0112A-3 encodes a polypeptide which has homology with wound-inducible protein inhibitors. MRNA species corresponding to 018-3 are transiently induced in response to sulfur dioxide and water deficit stress, and are late-induced by ozone stress. The 018-3 protein is Ozone fumigation to Atriplex canescens (saltbush) caused the homologous to thiol proteases. Clone OID2-2 and OIS14-3 show similar patterns in gene expression Transcript levels of the two genes rise rapidly and remain at a high level by seven days after ozone fumigation, and rise steadily in response to water deficit and sulfur dioxide stress. The deduced amino acids of both clones are glycine-rich proteins, and they have repeated motifs, (G-G-G-Y-G-H)n, and putative cell wall-targeting signal peptides. Northern analyses indicate that plant cells respond to ozone stress by increasing transcription of several genes. Furthermore, the expression of ozone-inducible genes varies with respect to the time course of induction and different stresses such as water-deficit and sulfur dioxide stress. The encoded proteins suggest that: first, ozone stress may generate wounding damage to increase the expression of the proteinase inhibitor (0112A-3) and the protease (018-3); second, ozone stress may change the cell wall components by increasing the amount of glycine-rich proteins (OID2-2 and OIS14-3); and third, ozone stress may change the cell wall structure with tyrosine-mediated cross-linking, which may use oxyradical-scavenging effects to relieve cellular stress.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectplant physiology.en
dc.subjectMajor plant physiology.en
dc.titleIsolation and characterization of five ozone-inductible cDNA clones from Atriplax canescens (saltbush)en
dc.typeThesisen
thesis.degree.disciplineplant physiologyen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access