Show simple item record

dc.creatorLyn, Gregory Michael
dc.date.accessioned2012-06-07T22:37:15Z
dc.date.available2012-06-07T22:37:15Z
dc.date.created1994
dc.date.issued1994
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1994-THESIS-L9874
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractExperimental investigations have been completed in the study of a simulated fuel injector system implementing an airblast atomization process called a jet in a crossflow as the primary means of fuel atomization. To complete these studies an apparatus has been designed and constructed. A laser diffraction particle analyzer technique is used to spatially measure the spray Sauter-Mean Diameters. The Rosin-Rammler two parameter model is assumed for the droplet size distribution. Injection pressure for the injected liquid, distilled water, is held constant at 10.240 atm for the five different nozzle orifice diameters. A water rotameter is used to vary flowrates from 0.75 to 5.0 GPH and airflow Reynolds numbers are set at 50,000, 60,000, and 70,000 depending on the desired condition. SMD shows an increase in size for an increased distance from the top to the bottom of the test channel which is defined as the Y-Position from the orifice exit. The SMD growth rate decreases for increased water flowrates for a given airflow and orifice injector. For equal air-to-liquid ratios, overall SMD increases as the water flowrate and airflow Reynolds number combinations decrease. Overall SMD decreases for decreased air-to-liquid ratios. SMD decreases as the spray progresses downstream of the orifice exit in the direction of the airflow (X-Position) for a constant Y-Coordinate. A correlation of SMD-to-orifice diameter is determined to be as follows: [ ]en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleDrop-size distribution for crosscurrent breakup of a liquid jet in a convective airstreamen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access