Show simple item record

dc.creatorBollineni, Prasanthi
dc.date.accessioned2012-06-07T22:35:36Z
dc.date.available2012-06-07T22:35:36Z
dc.date.created1994
dc.date.issued1994
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1994-THESIS-B692
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractComposting is one of the techniques that has evolved as a safe disposal and predisposal alternative to the stringent regulations on hazardous waste disposal. The implementation of this technique needs careful evaluation of the processes a hazardous compound undergoes when subjected to composting. The purpose of this thesis is to define these processes and develop a model for determining the fate of organic compounds in waste during in-vessel composting Volatilization and biodegradation are found to be the major fate determining processes. Following mass balance approach the compound's loss through these processes is evaluated by developing a fate model. Fate of six aromatic compounds which fall into three categories-volatile, semi-volatile, and non volatile, is determined and the results compared to the experimental values for validating the model. A sensitivity analysis has been performed to determine which parameters most influence the model behavior and quantitatively describe their effects on model performance. The results obtained from the model show close agreement with the experimental results. More data is required to quantify the slight differences observed. The volatilization loss is found to exist only for first few hours. Biodegradation rates are found to have very little impact on volatilization of the compound. Air flow rate and volume of the waste are found to have a noticeable effect on the volatilization of a compound. Bulk density is found to effect volatilization to a small extent. Air quality control measures are recommended for the first few days to deal with the volatilized gases.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectcivil engineering.en
dc.subjectMajor civil engineering.en
dc.titleA model for determining the fate of hazardous constituents in waste during in-vessel compostingen
dc.typeThesisen
thesis.degree.disciplinecivil engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access