Show simple item record

dc.contributor.advisorAllen, Roland
dc.creatorBeres, Richard Paul
dc.date.accessioned2020-08-21T21:51:25Z
dc.date.available2020-08-21T21:51:25Z
dc.date.issued1982
dc.identifier.urihttps://hdl.handle.net/1969.1/DISSERTATIONS-516380
dc.descriptionTypescript (photocopy).en
dc.description.abstractA new technique--the analytic Green's function, effective Hamiltonian technique--is utilized in calculations of bound states and resonances at solid surfaces. The results for electronic states in compound semiconductors are found to be in excellent agreement with angle-resolved photoemission and other experimental measurements. We begin by using the analytic representation of the crystal Green's function in a study of phonons at the (100) surface of a face-centered cubic crystal. The previous study of this problem involved diagonalizing 63 x 63 matrices. Here the calculations are performed essentially analytically, with a computer used to evaluate closed-form expressions. It is found that there are two new types of singularities in the surface contribution to the density of states, which we call "zero-width antiresonances" and "extremal-point singularities." They arise from the singularities that are evident in the analytic representation of the crystal Green's function when some group velocity v(,3) approaches zero. Next we turn to the physically more interesting calculation of bound and resonant surface states at the relaxed (110) surface of 11 compound semiconductors--GaAs, GaP, GaSb, ZnSe, ZnTe, InAs, InP, InSb, AlAs, AlSb, and AlP. Because our technique is superior to previous techniques for locating resonances, we find considerably more resonant structure than has been reported in previous theoretical studies. For example, we obtain a new branch of resonances A(,2)' that were not found in any of several very detailed calculations for GaAs. ...en
dc.format.extentviii, 168 leavesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectPhysicsen
dc.subject.classification1982 Dissertation B491
dc.subject.lcshSolid state electronicsen
dc.subject.lcshSolidsen
dc.subject.lcshSurfacesen
dc.titleSurface electronic states in semiconductors and surface phonons : a new approachen
dc.typeThesisen
thesis.degree.disciplinePhilosophyen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.namePh. D. in Philosophyen
thesis.degree.levelDoctorialen
dc.contributor.committeeMemberHu, Chai-Ren
dc.contributor.committeeMemberNarcowich, Francis
dc.contributor.committeeMemberReading, John
dc.type.genredissertationsen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen
dc.publisher.digitalTexas A&M University. Libraries
dc.identifier.oclc10481689


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access