Show simple item record

dc.contributor.advisorO'Neal, Dennis
dc.creatorNoboa, Homero Luis
dc.date.accessioned2020-08-21T22:09:57Z
dc.date.available2020-08-21T22:09:57Z
dc.date.issued1993
dc.identifier.urihttps://hdl.handle.net/1969.1/DISSERTATIONS-1529880
dc.descriptionVita.en
dc.description.abstractThe purpose of this project was to model and quantify the increase of the absorptivity of radiant barriers caused by the accumulation of dust on the surface of radiant barriers. This research was the continuation of a previous work by the author at Texas A&M University in which a radiation energy balance inside the attic enclosure was developed. The particles were considered as flat, circular planes, all having the same radii. That early model showed that there was a linear relationship between the fraction of area of the foil covered by dust and the mean absorptivity of the dusty radiant barrier. In the present work, it was found that the assumption of treating the dust particles as plane circles, underestimated the effective area of the particles by about 20%. Experimental measurements indicated that dust particles achieved the same temperature as the radiant barrier. The new model used the linear relationship just described, and simulated the dust particles as flat circular planes having random radii and laying in random locations within the radiant barrier surface. The new model calculated the fraction of radiant barrier area covered by particles using a digital array in which the clean barrier was represented as zeroes and the dust particles were represented as a set of ones appropriately dimensioned inside the array. The experimentation used natural dust and Arizona Road Test Dust. Using an infrared emissometer, the emissivities (absorptivities) of the clean and dusty barriers were measured and using an electronic scale, the dust loading was measured. An electron microscope was used to experimentally find the fraction of radiant barrier covered by the dust particles to correlate the experimentally found absorptivity with the experimentally found fraction of dust coverage. The limited experimental data available were also used to correlate the absorptivity of the dusty radiant barrier with the time of dust accumulation and the location of the barrier inside the attic. A linear relationship between the absorptivity and the time of dust accumulation was found that can be applied to predict future barrier effectiveness based upon the rate of dust accumulation for a given location.en
dc.format.extentxvii, 144 leavesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMajor mechanical engineeringen
dc.subject.classification1993 Dissertation N753
dc.titleThe influence of dust on the absorptivity of radiant barriersen
dc.typeThesisen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.namePh. Den
dc.contributor.committeeMemberDegelman, Larry D.
dc.contributor.committeeMemberSeyed-Yagoobi, Jamal
dc.contributor.committeeMemberTurner, W. D.
dc.type.genredissertationsen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen
dc.publisher.digitalTexas A&M University. Libraries
dc.identifier.oclc34512472


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access