A distributed converging overland flow model: 1. Mathematical solutions
Loading...
Date
1976-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Abstract
In models for overland flow based on kinematic wave theory the friction parameter is assumed to be constant. This paper studies a converging geometry and allows continuous spatial variability in the parameter. Parameter variability results in a completely distributed approach, reduces the need to use a complex network model to simulate watershed surface runoff, and saves much computational time and effort. This paper is the first in a series of three. It develops analytical solutions for a converging geometry with no infiltration and temporally constant lateral inflow. Part 2 discusses the effect of infiltration on the runoff process, and part 3 discusses application of the proposed model to natural agricultural watersheds.
Description
An edited version of this paper was published by AGU. Copyright 1976 American Geophysical Union.
Keywords
Citation
Sherman, B., and V. P. Singh (1976), A distributed converging overland flow model: 1. Mathematical solutions, Water Resources Research, 12(5), doi:10.1029/WR012i005p00889. To view the published open abstract, go to http://dx.doi.org and enter the DOI.