Show simple item record

dc.contributor.advisorDougherty, Edward R.
dc.contributor.advisorSerpedin, Erchin
dc.creatorZhao, Wentao
dc.date.accessioned2010-01-15T00:12:59Z
dc.date.accessioned2010-01-16T01:08:12Z
dc.date.available2010-01-15T00:12:59Z
dc.date.available2010-01-16T01:08:12Z
dc.date.created2008-08
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2952
dc.description.abstractBiological phenomena in the cells can be explained in terms of the interactions among biological macro-molecules, e.g., DNAs, RNAs and proteins. These interactions can be modeled by genetic regulatory networks (GRNs). This dissertation proposes to reverse engineering the GRNs based on heterogeneous biological data sets, including time-series and time-independent gene expressions, Chromatin ImmunoPrecipatation (ChIP) data, gene sequence and motifs and other possible sources of knowledge. The objective of this research is to propose novel computational methods to catch pace with the fast evolving biological databases. Signal processing techniques are exploited to develop computationally efficient, accurate and robust algorithms, which deal individually or collectively with various data sets. Methods of power spectral density estimation are discussed to identify genes participating in various biological processes. Information theoretic methods are applied for non-parametric inference. Bayesian methods are adopted to incorporate several sources with prior knowledge. This work aims to construct an inference system which takes into account different sources of information such that the absence of some components will not interfere with the rest of the system. It has been verified that the proposed algorithms achieve better inference accuracy and higher computational efficiency compared with other state-of-the-art schemes, e.g. REVEAL, ARACNE, Bayesian Networks and Relevance Networks, at presence of artificial time series and steady state microarray measurements. The proposed algorithms are especially appealing when the the sample size is small. Besides, they are able to integrate multiple heterogeneous data sources, e.g. ChIP and sequence data, so that a unified GRN can be inferred. The analysis of biological literature and in silico experiments on real data sets for fruit fly, yeast and human have corroborated part of the inferred GRN. The research has also produced a set of potential control targets for designing gene therapy strategies.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectgenetic networken
dc.subjectsignal processingen
dc.titleGenomic applications of statistical signal processingen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberChan, Andrew
dc.contributor.committeeMemberKundur, Deepa
dc.contributor.committeeMemberSze, Sing-Hoi
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record