Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pore-scale analysis of thermal remediation of NAPL-contaminated subsurface environments

    Thumbnail
    View/Open
    AHN-DISSERTATION.pdf (616.9Kb)
    Date
    2009-05-15
    Author
    Ahn, Min
    Metadata
    Show full item record
    Abstract
    The possible benefits of thermal remediation of NAPL-contaminated subsurface were analyzed at pore-scale. Force balance analysis was performed to provide the insight and information on the critical conditions for the blob mobilization. First, the critical blob radius for blob mobilization was calculated in terms of blob radius, temperature, and water velocity. Temperature increase enhanced the blob mobilization along with the decrease of interfacial tension. Water velocity increase also enhanced the blob mobilization. Critical water velocity provided the critical condition for the initiation of blob mobilization to distinguish singlet and doublet in blob size. Second, the terminal (or steady state) blob velocity at the steady state blob motion was determined. Increases of temperature and water velocity raised the terminal blob velocity. When the observation of blob mobilization moved from REV scale (macroscale) to pore-scale, terminal blob velocity showed the different phenomena according to the change of oil saturation. At macro-scale, the terminal blob velocity was smaller than water velocity by an order or two. However, the terminal blob velocity reached to water velocity at pore-scale. This investigation would provide the better understanding on the pore-scale analysis of residual NAPL blob mobilization by thermal remediation. Additionally, the pore-scale analysis developed in this study would be incorporated into a general conservation equation in terms of the accumulation of multiple blobs. It would derive continuumaveraged equations that accurately represent pore-level physics. In conclusion, the study on the critical conditions for the initiation of blob mobilization as a single discrete blob would have some contribution to the transport and fate of NAPL contaminant and the desired subsurface remediation.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2918
    Subject
    pore-scale
    thermal remediation
    NAPL
    force balance analysis
    dimensional analysis
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Ahn, Min (2008). Pore-scale analysis of thermal remediation of NAPL-contaminated subsurface environments. Doctoral dissertation, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2918.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV