Show simple item record

dc.contributor.advisorTeizer, Winfried
dc.creatorSeo, Dongmin
dc.date.accessioned2010-01-15T00:07:17Z
dc.date.accessioned2010-01-16T00:42:19Z
dc.date.available2010-01-15T00:07:17Z
dc.date.available2010-01-16T00:42:19Z
dc.date.created2007-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2574
dc.description.abstractThis dissertation focuses on three separate studies. First, magnetization of the Mn12- acetate was studied by low temperature hysteresis loops and DC magnetization data on magnetically aligned Mn12-acetate micro-crystals. Secondly, Mn12-acetate thin films were fabricated and characterized by AFM and STM. Finally, magnetization of the film material was also studied. Enhanced alignment of Mn12-acetate micro-crystals as compared to prior studies was verified by observation of several sharp steps in low temperature hysteresis loops. It was found that ~ 0.5 T is sufficient to orient the micro-crystals in an organic solvent to a degree comparable to a single crystal. The degree of the alignment was controlled by varying the magnetic field at room temperature and during the cooling process. Subsequently, low temperature hysteresis loops and DC magnetizations were measured for each prepared orientation state of a sample. The high temperature magnetic anisotropy responsible for the alignment could not be measured, possibly due to its small magnitude. Mn12-acetate was deposited onto Si/SiO2 by a solution evaporation method. Atomic force microscopy studies revealed that 2 nm thick films of molecular level smoothness were formed. Mn12-acetate was also deposited onto a Highly Ordered Pyrolytic Graphite (HOPG) surface for scanning tunneling microscopy (STM) studies. A self-assembled triangular lattice was observed in the Mn12-acetate thin films by STM at room temperature under ambient conditions. These STM images show typical center to center intermolecular separations of about 6.3 nm and height corrugation of less than 0.5 nm. Magnetization measurements were not successful in Mn12-acetate thin films due to the small amount of material in the film and the large background signal from the substrate. Therefore, a sample for the magnetization measurements, called “film material”, was made by evaporating a dilute solution of Mn12-acetate powder in acetonitrile. Significant changes in magnetic properties of the film material were observed from magnetization measurements. The blocking temperature of the film material was found to increase to TB > 10 K at low magnetic fields.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectMn12-acetateen
dc.subjectSingle Molecule Magneten
dc.subjectMagnetic Anisotropyen
dc.subjectThin Filmen
dc.subjectAFMen
dc.subjectSTMen
dc.subjectSQUIDen
dc.titleAlignment of micro-crystals of Mn12-acetate and direct observation of single molecules thereofen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPhysicsen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberAbanov, Artem
dc.contributor.committeeMemberDunbar, Kim R.
dc.contributor.committeeMemberRoss, Joseph H.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record