Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preconditioning of discontinuous Galerkin methods for second order elliptic problems

    Thumbnail
    View/Open
    DOBREV-DISSERTATION.pdf (528.4Kb)
    Date
    2009-05-15
    Author
    Dobrev, Veselin Asenov
    Metadata
    Show full item record
    Abstract
    We consider algorithms for preconditioning of two discontinuous Galerkin (DG) methods for second order elliptic problems, namely the symmetric interior penalty (SIPG) method and the method of Baumann and Oden. For the SIPG method we first consider two-level preconditioners using coarse spaces of either continuous piecewise polynomial functions or piecewise constant (discontinuous) functions. We show that both choices give rise to uniform, with respect to the mesh size, preconditioners. We also consider multilevel preconditioners based on the same two types of coarse spaces. In the case when continuous coarse spaces are used, we prove that a variable V-cycle multigrid algorithm is a uniform preconditioner. We present numerical experiments illustrating the behavior of the considered preconditioners when applied to various test problems in three spatial dimensions. The numerical results confirm our theoretical results and in the cases not covered by the theory show the efficiency of the proposed algorithms. Another approach for preconditioning the SIPG method that we consider is an algebraic multigrid algorithm using coarsening based on element agglomeration which is suitable for unstructured meshes. We also consider an improved version of the algorithm using a smoothed aggregation technique. We present numerical experiments using the proposed algorithms which show their efficiency as uniform preconditioners. For the method of Baumann and Oden we construct a preconditioner based on an orthogonal splitting of the discrete space into piecewise constant functions and functions with zero average over each element. We show that the preconditioner is uniformly spectrally equivalent to an appropriate symmetrization of the discrete equations when quadratic or higher order finite elements are used. In the case of linear elements we give a characterization of the kernel of the discrete system and present numerical evidence that the method has optimal convergence rates in both L2 and H1 norms. We present numerical experiments which show that the convergence of the proposed preconditioning technique is independent of the mesh size.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2531
    Subject
    DG methods
    multigrid methods
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Dobrev, Veselin Asenov (2007). Preconditioning of discontinuous Galerkin methods for second order elliptic problems. Doctoral dissertation, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2531.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV