Show simple item record

dc.contributor.advisorBraby, Leslie A.
dc.creatorDimmerling, Paul James
dc.date.accessioned2010-01-15T00:11:33Z
dc.date.accessioned2010-01-16T00:38:52Z
dc.date.available2010-01-15T00:11:33Z
dc.date.available2010-01-16T00:38:52Z
dc.date.created2007-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2524
dc.description.abstractWhen an accident involving the possibility of a plutonium contaminated wound occurs, the contamination is often quantified using sodium iodide (NaI(Tl)) and high purity germanium (HPGe) detection systems. The NaI(Tl) system is used to quantify the amount of contamination, while HPGe is used to gauge the depth of contamination in the wound. Assessment of plutonium contaminated wounds is difficult due to the lowenergy and yield of the uranium L-shell x rays used for the measurement, which can be effected by source distance, shape, and tissue attenuation. These effects on wound counting systems used at Los Alamos National Laboratory (LANL) were characterized experimentally using common source shapes (disk, point, and line) and acrylic plastic as a tissue substitute. Experiments were conducted to characterize detector responses as a function of tissue attenuation, source distance, and source depth in tissue. The computer code MCNP5 was used to model both systems for wound counting and better examine angular displacement of a line source in tissue. The NaI(Tl) detector response was characterized using absolute detector efficiency for all experimental measurements. Measurements showed that the NaI(Tl) system is significantly effected by the source to detector position and depth in tissue. Characterization of the HPGe detection system was done utilizing the peak-to-peak ratio from the two low-energy x rays. HPGe peak-to-peak ratios were not affected by source to detector distance, but showed an increased response to source depth in tissue. MCNP results suggested that small incident angles from the plane of the detector face can cause significant effects on the response of both detectors. In summary, the response of both systems showed dependence on source geometry and depth of contamination in tissue. Correction values and uncertainties were determined based on these dependencies.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectPlutoniumen
dc.subjectwounden
dc.subjectNaI(Tl)en
dc.subjectHPGeen
dc.subjectcontaminationen
dc.subjectLANLen
dc.subjecten
dc.titleCharacterization of wound monitoring systems used to quantify and locate plutonium contaminationen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentNuclear Engineeringen
thesis.degree.disciplineHealth Physicsen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberPoston, John W. Sr.
dc.contributor.committeeMemberWalker, Michael
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record