Show simple item record

dc.contributor.advisorBevan, John W.
dc.creatorMcElmurry, Blake Anthony
dc.date.accessioned2010-01-15T00:04:07Z
dc.date.accessioned2010-01-16T00:26:59Z
dc.date.available2010-01-15T00:04:07Z
dc.date.available2010-01-16T00:26:59Z
dc.date.created2008-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2325
dc.description.abstractThe development of a co-axially configured submillimeter spectrometer is reported. The spectrometer has been constructed to observe molecular complexes that exhibit non-covalent interactions with energies much less than that of a traditional covalent bond. The structure of molecular complexes such as those formed between a rare gas and a hydrogen halide, Rg:HX where Rg is a rare gas (Rg=Ne, Ar and Kr) and HX (X=F, Cl, Br and I) can be determined directly and accurately. The center of mass interaction distance, RCM, as well as the angle of the hydrogen halide is determined, along with direct evaluation of the intermolecular vibrations as well as accurate isomerization energies between the hydrogen bound and van der Waals forms. The accuracy of the frequency determination of rovibrational transitions using the submillimeter spectrometer is also evaluated by direct comparison with the state-of-theart pulsed nozzle Fourier transform microwave spectrometer, and this accuracy is estimated to be less than 1 kHz at 300 GHz. The tunneling or geared bending vibration of a dimer of hydrogen bromide or hydrogen iodide has been investigated. The selection rules, nuclear statistics and intensity alternation for transitions observed in these dimmers, which is a consequence of interchanging two identical nuclei in the low frequency geared bending vibration of the molecular complex, are reported. Furthermore, the rotation and quadrupole coupling constants are used to determine a vibrationally averaged structure of the complex. The energy of the low frequency bending vibration can then be compared with ab initio based potential energy surfaces. A study of the multiple isomeric forms of the molecular complex OC:HI is also presented. Multiple isotopic substitutions are used to determine the relevant ground state structures and data reported evidence for an anomalous isotope effect supporting a ground state isotopic isomerization effect. All spectroscopic data that has been reported here has been additionally used to subsequently model and generate vibrationally complete morphed potential energy surfaces that are capable or reproducing the experimentally observed data. The utility of this procedure is evaluated on a predicative basis and comparisons made with newly observed data.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectSpectroscopyen
dc.subjectMolecular Complexesen
dc.titleA co-axially configured submillimeter spectrometer and investigations of hydrogen bound molecular complexesen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberFord, Lewis A.
dc.contributor.committeeMemberLucchese, Robert R.
dc.contributor.committeeMemberNorth, Simon W.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record