Show simple item record

dc.contributor.advisorKhatri, Sunil, P
dc.creatorPaul, Suganth
dc.date.accessioned2010-01-15T00:04:30Z
dc.date.accessioned2010-01-16T00:18:58Z
dc.date.available2010-01-15T00:04:30Z
dc.date.available2010-01-16T00:18:58Z
dc.date.created2007-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2025
dc.description.abstractPower Consumption in VLSI (Very Large Scale Integrated) circuits is currently a major issue in the semiconductor industry. Power is a first order design constraint in many applications. Several of these applications need extreme low power but do not need high speed. Sub-threshold circuit design can be used in these cases, but at such a low supply voltage these circuits exhibit an exponential sensitivity to process, voltage and temperature (PVT) variations. In this thesis we implement and test a robust sub-threshold design flow which uses circuit level PVT compensation to stabilize circuit performance. This is done by dynamic modulation of the delay of a representative signal in the circuit and then phase locking it with an external reference signal. We design and fabricate a sub-threshold wireless BFSK transmitter chip. The transmitter is specified to transmit baseband signals up to a data rate of 32kbps over a distance of 1000m. In addition to the sub-threshold implementation, we implement the BFSK transmitter using a standard cell methodology on the same die operating at super-threshold voltages on a different voltage domain. Experiments using the fabricated die show that the sub-threshold circuit consumes 19.4x lower power than the traditional standard cell based implementation.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.urihttps://hdl.handle.net/1969.1/85792
dc.subjectsub-thresholden
dc.subjectwirelessen
dc.subjectBFSKen
dc.subjecttransmitteren
dc.subjectProgrammable Logic Arraryen
dc.subjectadaptive body biasen
dc.subjecten
dc.titleDesign and implementation of a sub-threshold wireless BFSK transmitteren
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineComputer Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberLi, Peng
dc.contributor.committeeMemberWalker, Duncan, M
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record