Show simple item record

dc.contributor.advisorBatchelor, Bill
dc.creatorDuan, Yuhang
dc.date.accessioned2012-10-19T15:30:40Z
dc.date.accessioned2012-10-22T18:03:47Z
dc.date.available2014-11-03T19:49:14Z
dc.date.created2012-08
dc.date.issued2012-10-19
dc.date.submittedAugust 2012
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11707
dc.description.abstractPerchlorate is one of the major emerging contaminants of concern and has been found in soil and water systems throughout the United States. Human exposures to perchlorate could occur by ingestion of contaminated water and food as well as by skin contact. Studies show that perchlorate blocks the sodium iodide symporter (NIS) protein in human body, which results in several diseases. It has been demonstrated that perchlorate can be removed by Advanced Reduction Processes (ARPs) that combine chemical reductants (e.g. sulfite) with activating methods (e.g. UV light) in order to produce highly reactive reducing free radicals that are capable of rapid and effective perchlorate reduction. However, other compounds in a real system might inhibit or promote this reduction process. Natural organic matter (NOM) widely exists in the environment and it can absorb UV light, so it has the potential to influence the process of perchlorate reduction by ARPs that use UV light as the activating method. Therefore, batch experiments were conducted to obtain data on the impacts of natural organic matter and light intensity on destruction of perchlorate by the ARPs that use sulfite activated by ultraviolet light produced by low-pressure mercury lamps or KrCl excimer lamps. The results indicate that NOM strongly inhibits perchlorate removal by either the sulfite/UV-KrCl or the sulfite/UV-L ARP, because NOM competes with sulfite for UV light and can possibly scavenge sulfite radicals. Even though the absorbance of sulfite is much higher at UV wavelength of 222 nm than that at 254 nm, the results indicate that a higher portion of perchlorate was removed with the UV-L lamp than with the UV-KrCl lamp. The results of this study will help to develop the proper way to apply the ARPs in a real wastewater treatment plant.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectPerchlorate reductionen
dc.subjectNOMen
dc.subjectARPen
dc.subjectUltraviolet lighten
dc.titleImpacts of Natural Organic Matter on Perchlorate Removal by an Advanced Reduction Processen
dc.typeThesisen
thesis.degree.departmentCivil Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberBoulanger, Bryan
dc.contributor.committeeMemberHuang, Yongheng
dc.type.genrethesisen
dc.type.materialtexten
local.embargo.terms2014-10-22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record