Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Potential of Using Natural Gas in HCCI Engines: Results from Zero- and Multi-dimensional Simulations

    Thumbnail
    View/ Open
    ZHENG-DISSERTATION.pdf (4.635Mb)
    Date
    2012-07-16
    Author
    Zheng, Junnian
    Metadata
    Show full item record
    Abstract
    With the depletion of petroleum based fuels and the corresponding concerns of national energy security issues, natural gas as an alternative fuel in IC engine applications has become an attractive option. Natural gas requires minimum mixture preparation, and is chemically stable, both of which make it a suitable fuel for homogeneous charged compression ignition (HCCI) engines. Compared to petroleum based fuels, natural gas produces less green-house emissions. However, natural gas is hard to auto-ignite and therefore requires a higher compression ratio, some amount of intake heating, or some type of pre-ignition. In addition, natural gas usually has large differences in fuel composition from field to field, which adds more uncertainties for engine applications. The current study determines the auto-ignition characteristics, engine performance, and nitric oxides emissions as functions of major operating parameters for a natural gas fueled HCCI engine, and determines differences relative to gasoline fueled HCCI engines which have been studied for many years. These tasks have been done using both zero- and multi-dimensional engine simulations. By zero-dimensional simulation, the effects of varying equivalence ratios, engine speeds, compression ratio, EGR level, intake pressure and fuel compositions are determined and analyzed in detail. To be able to account for the in-cylinder inhomogeneous effect on the HCCI combustion, multi-zone models coupled with cold-flow CFD simulations are employed in addition to the single-zone model. The effects of non-homogeneous temperature and equivalence ratio stratification on the ignition timing, combustion phasing, and emissions formation have been studied and discussed. Finally, the preliminary two-dimensional axial-symmetric CFD simulations have been conducted to study the in-cylinder temperature and the species distributions, which provide better visualization of the natural gas auto-ignition process.
    URI
    https://hdl.handle.net/1969.1/ETD-TAMU-2012-05-3233
    Subject
    homogeneous charged compression ignition
    HCCI
    natural gas
    engine simulation
    chemical kinetics
    CFD
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Zheng, Junnian (2012). The Potential of Using Natural Gas in HCCI Engines: Results from Zero- and Multi-dimensional Simulations. Doctoral dissertation, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /ETD -TAMU -2012 -05 -3233.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV