Show simple item record

dc.contributor.advisorSoriaga, Manuel P.
dc.creatorCummins, Kyle
dc.date.accessioned2012-07-16T15:58:48Z
dc.date.accessioned2012-07-16T20:29:29Z
dc.date.available2014-09-16T07:28:20Z
dc.date.created2012-05
dc.date.issued2012-07-16
dc.date.submittedMay 2012
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11199
dc.description.abstractA pair of studies investigating the deposition and surface chemical properties of ultrathin metal films were pursued: (i) Pt-Co alloys on Mo(110); and (ii) Pd on Pt(111). Experimental measurement was based on a combination of electron spectroscopy (low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and low energy electron diffraction) and electrochemistry (voltage efficiency, voltammetry, and coulometry). Mixed-metal preparation of Pt-Co films by thermal vapor deposition (TVD) resulted in a thin-film binary alloy. Careful analysis revealed a substantial divergence between the composition at the interface and that in the interior. This outcome was observed for all compositions and allowed for the construction of a ?surface phase diagram?. The proclivities of the alloys of pre-selected compositions towards enhanced catalysis of the oxygen-reduction reaction were assessed in terms of their voltage efficiencies, as manifested by the open-circuit potential (OCP) in O2-saturated dilute sulfuric acid electrolyte. The particular alloy surface, Pt3Co (XPt=3,XCo=1), whether from the thin film or a bulk single crystal, exhibited the highest OCP, a significant improvement over pure Pt but still appreciably lower than the thermodynamic limit. Under test conditions, the degradation of thusly-prepared films was primarily due to Co corrosion. Ultrathin Pd films on well-defined Pt(111) surfaces, with coverages from 0.5 to 8 monolayers (ML), were prepared by surface-limited redox replacement reaction (galvanic exchange) of underpotentially deposited Cu. Spectroscopic data revealed that films prepared in this manner are elementally pure, pseudomorphic to the substrate, and stable, independent of the surface coverage (?) of palladium. Analysis of the voltammetric profiles in the hydrogen evolution region revealed unique properties of hydrogen adsorption unseen in bulk electrodes. Notably, at 1 ML coverage, a step-free film was produced that did not exhibit hydrogen absorption. At higher coverages, digital (layer-by-layer) deposition gave way to 3D islands in a Stranski- Krastanov growth mode; under these conditions, onset of bulk-like behavior was observed. This method makes possible the synthesis of well-ordered noble-metal films in the absence of high-temperature treatmenten
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectUHV-ECen
dc.subjectinterfacial electrochemistryen
dc.subjectplatinumen
dc.subjectcobalten
dc.subjectPt-Coen
dc.subjectthin filmsen
dc.subjectalloysen
dc.subjectPt(111)en
dc.subjectORRen
dc.subjectUPDen
dc.subjectgalvanic displacementen
dc.subjectSLR3en
dc.subjectsurface limited redox replacement reactionen
dc.titleInterfacial Properties of Ultrathin- Film Metal Electrodes: Studies by Combined Electron Spectroscopy and Electrochemistryen
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberVigh, Gyula
dc.contributor.committeeMemberBatteas, James D.
dc.contributor.committeeMemberZhang, Xinghang
dc.type.genrethesisen
dc.type.materialtexten
local.embargo.terms2014-07-16


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record