Show simple item record

dc.contributor.advisorWeiss, Robert
dc.contributor.advisorSparks, David
dc.creatorO'Shay, Justin
dc.date.accessioned2012-07-16T15:58:16Z
dc.date.accessioned2012-07-16T20:24:09Z
dc.date.available2014-09-16T07:28:19Z
dc.date.created2012-05
dc.date.issued2012-07-16
dc.date.submittedMay 2012
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10991
dc.description.abstractEarthquake and submarine mass failure are the most frequent causes of tsunami waves. While the process of the tsunami generation by earthquakes is reasonably well understood, the generation of tsunami waves during submarine mass failure is not. Estimates of the energy released during a tsunamigenic earthquake and respective tsunami wave draw a clear picture of the efficiency of the tsunami-generating process. However for submarine landslides, this is not as straightforward because the generation process has never been recorded in nature making energy inferences very difficult. Hence the efficiency of submarine landslide as tsunami generators is yet to be conclusively determined. As the result of this uncertainty, different equations, derived from experimental data or theory, result in leading-wave amplitude that vary over 6 orders of magnitude for the same initial slide conditions. To arrive at more robust estimates of the leading-wave characteristics and associated runup, the spatiotemporal dynamics of the coupling between the slide body and water column needs to be investigated. The duration the water surface deformation is coupled with the slide motion is an essential question to shed light on the energy transfer. A parametric study is conducted with the state of-the-art hydrocode iSALE in order to shed light on this complex geophysical event. The mass, viscosity, and depth of submergence are the particular slide parameters varied and their relationship to runup and decoupling time is analyzed.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectlandslideen
dc.subjecthydrocodeen
dc.subjectmodelingen
dc.subjectinitial wavesen
dc.subjectlandslide generated tsunamisen
dc.titleInitial Waves from Deformable Submarine Landslides: A Study on the Separation Time and Parameter Relationshipsen
dc.typeThesisen
thesis.degree.departmentGeology and Geophysicsen
thesis.degree.disciplineGeophysicsen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberKaihatu, James
dc.type.genrethesisen
dc.type.materialtexten
local.embargo.terms2014-07-16


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record