Show simple item record

dc.contributor.advisorMorrision, Gerald
dc.creatorGlier, Michael W.
dc.date.accessioned2012-07-16T15:56:50Z
dc.date.accessioned2012-07-16T20:33:05Z
dc.date.available2012-07-16T15:56:50Z
dc.date.available2012-07-16T20:33:05Z
dc.date.created2011-05
dc.date.issued2012-07-16
dc.date.submittedMay 2011
dc.identifier.urihttp://hdl.handle.net/1969.1/ETD-TAMU-2011-05-9238
dc.description.abstractThe progressing cavity pump is a type of positive displacement pump that is capable of moving nearly any fluid. This type of pump transports fluids in a series of discrete cavities formed by the helical geometries of its rigid rotor and elastomeric stator. With appropriate materials for the rotor and stator, this pump can move combinations of liquids, suspended solids, and gasses equally well. Because of its versatility, the progressing cavity pump is widely used in the oil industry to transport mixtures of oil, water, and sediment; this investigation was prompted by a desire to extend the use of progressing cavity pumps to wet gas pumping applications. One of the progressing cavity pump's limitations is that the friction between the rotor and stator can generate enough heat to damage the rotor if the pump is not lubricated and cooled by the process fluid. Conventional wisdom dictates that this type of pump will overheat if it pumps only gas, with no liquid in the process fluid. If a progressing cavity pump is used to boost the output from a wet gas well, it could potentially be damaged if the well's output is too dry for an extended period of time. This project seeks to determine how a progressing cavity pump behaves when operating at gas volume fractions between 0.90 and 0.98. A progressing cavity pump manufactured by seepex, model no. BN 130-12, is tested at half and full speed using air-water mixtures with gas volume fractions of 0.90, 0.92, 0.94, 0.96, and 0.98. The pump's inlet and outlet conditions are controlled to produce suction pressures of 15, 30, and 45 psi and outlet pressures 0, 30, 60, 90, 120, and 150 psi higher than the inlet pressure. A series of thermocouples, pressure transducers, and turbine flow meters measures the pump's inlet and outlet conditions, the flow rates of water and air entering the pump, and pressures and temperatures at four positions within the pump's stator. Over all test conditions, the maximum recorded temperature of the pump stator did not exceed the maximum safe rubber temperature specified by the manufacturer. The pump’s flow rate is independent of both the fluid's gas volume fraction and the pressure difference across the pump, but it increases slightly with the pump's suction pressure. The pump's mechanical load, however, is dependent only on the pressure difference across the pump and increases linearly with that parameter. Pressure measurements within the stator demonstrated that the leakage between the pump's cavities increases with the fluids gas volume fraction, indicating that liquid inside the pump improves its sealing capability. However, those same measurements failed to detect any appreciable leakage between the two pressure taps nearest the pump's inlet. This last observation suggests that the pump could be shortened by as much as 25 percent without losing any performance in the range of tested conditions; shortening the pump should increase its efficiency by decreasing its frictional mechanical load.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectpcpen
dc.subjectprogressing cavity pumpen
dc.subjectmultiphaseen
dc.subjectgas volume fractionen
dc.titleAn Experimental Examination of a Progressing Cavity Pump Operating at Very High Gas Volume Fractionsen
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberFalcone, Gioia
dc.contributor.committeeMemberRanjan, Devesh
dc.type.genrethesisen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record