Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures

    Thumbnail
    View/Open
    XUE-THESIS.pdf (1.844Mb)
    Date
    2011-02-22
    Author
    Xue, Wenxu
    Metadata
    Show full item record
    Abstract
    Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF) considering interaction between a hydraulic fracture (HF) and a pre-existing NF, has been investigated comprehensively using a two dimensional Displacement Discontinuity Method (DDM) Model in this thesis. The rock is first considered as an elastic impermeable medium (with no leakoff), and then the effects of pore pressure change as a result of leakoff of fracturing fluid are considered. A uniform pressure fluid model and a Newtonian fluid flow model are used to calculate the fluid flow, fluid pressure and width distribution along the fracture. Joint elements are implemented to describe different NF contact modes (stick, slip, and open mode). The structural criterion is used for predicting the direction and mode of fracture propagation. The numerical model was used to first examine the mechanical response of the NF to predict potential reactivation of the NF and the resultant probable location for fracture re-initiation. Results demonstrate that: 1) Before the HF reaches a NF, the possibility of fracture re-initiation across the NF and with an offset is enhanced when the NF has weaker interfaces; 2) During the stage of fluid infiltration along the NF, a maximum tensile stress peak can be generated at the end of the opening zone along the NF ahead of the fluid front; 3) Poroelastic effects, arising from fluid diffusion into the rock deformation can induce closure and compressive stress at the center of the NF ahead of the HF tip before HF arrival. Upon coalescence when fluid flows along the NF, the poroelastic effects tend to reduce the value of the HF aperture and this decreases the tension peak and the possibility of fracture re-initiation with time. Next, HF trajectories near a NF were examined prior to coalesce with the NF using different joint, rock and fluid properties. Our analysis shows that: 1) Hydraulic fracture trajectories near a NF may bend and deviate from the direction of the maximum horizontal stress when using a joint model that includes initial joint deformation; 2) Hydraulic fractures propagating with higher injection rate or fracturing fluid of higher viscosity propagate longer distance when turning to the direction of maximum horizontal stress; 3) Fracture trajectories are less dependent on injection rate or fluid viscosity when using a joint model that includes initial joint deformation; whereas, they are more dominated by injection rate and fluid viscosity when using a joint model that excludes initial joint deformation.
    URI
    http://hdl.handle.net/1969.1/ETD-TAMU-2010-12-8782
    Subject
    Hydraulic Fracturing
    Natural fractures
    Poroelastic Effects
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Xue, Wenxu (2010). Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -2010 -12 -8782.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV