Show simple item record

dc.contributor.advisorDunbar, Kim R.
dc.creatorKaradas, Ferdi
dc.date.accessioned2011-02-22T22:24:21Z
dc.date.accessioned2011-02-22T23:48:48Z
dc.date.available2011-02-22T22:24:21Z
dc.date.available2011-02-22T23:48:48Z
dc.date.created2009-12
dc.date.issued2011-02-22
dc.date.submittedDecember 2009
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7622
dc.description.abstractThe cyanide ligand has frequently been used to prepare clusters with novel magnetic properties due to its ability to provide an efficient pathway for superexchange between metal centers that are bound in an end-to-end fashion. One of the common synthetic approaches in this chemistry is to design suitable cyanide containing precursors and then to react such building blocks with metal complexes consisting of accessible sites. The triphos ligand (triphos: 1,1,1-tris(diphenylphosphinomethyl)ethane) has been employed in this vein to prepare metal complexes, one of which is a five coordinate paramagnetic complex (S = 1/2) with a square pyramidal metal center, [CoII(triphos)(CN)2]. A family of molecular squares, [{MIICl2}2{CoII(triphos)(CN)2}2] (M= Mn (2), Fe (3), Co (4), Ni (5), and Zn (6)), has been synthesized by the reaction of CoII(triphos)(CN)2 and MCl2 (M= Mn, Co, Ni, Zn) or Fe4Cl8(THF)6 in CH2Cl2/EtOH mixture. A series of cyanide-bridged trinuclear complexes, {[Co(triphos)(CN)2]2 [M(MeOH)4]}(ClO4)2 ( M = Mn (7), Fe (8), Co (9), and Ni (10)) and tetranuclear complexes, {[Co(triphos)(CN)2]2[M(MeOH)4]2}(ClO4)4 ([Co2M2] M = Mn (11) and Ni (12)) have been synthesized in a similar fashion by the reaction of CoII(triphos)(CN)2 and M(ClO4)2.6H2O (M= Mn, Fe, Co, Ni) in methanol. The trinuclear compounds (7-9), and tetranuclear complexes (2-6, 11, 12), are characterized by antiferromagnetic coupling between metal centers while magnetic behavior of 10 indicates the presence of ferromagnetic interactions between the paramagnetic metal centers. Interactions between magnetic orbitals of Co(II) and M(II) ions were also investigated by means of the density functional theoretical (DFT) calculations. Another triphos containing building block, [(triphos)Re(CN)3] anion (13), has been employed to prepare derivatives of a cubic SMM cluster with four octahedral Re(II) ions and four tetrahedral Mn(II) sites bridging through cyanide ligand. The reactions of Re(II) precursor with MnI2 and solvated Mn(II) ions resulting in derivatives of Re4Mn4 cube with different ligands attached to the Mn center other than the chloride atom were reported. Our efforts on linking these cubes using organo cyanide ligands such as dicyanamide (dca) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form extended networks were also discussed.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectrheniumen
dc.subjectcyanideen
dc.subjectorganometallicen
dc.subjectmagnetismen
dc.subjectsmmen
dc.subjectsingle molecule magnetismen
dc.subjecttcnqen
dc.subjecttriphosen
dc.subjectcapping liganden
dc.subjecttransition metal ionsen
dc.titlePreparation and Characterization of Cyanide-Bridged Molecular Clusters and Extended Networks Using the Building-Block Approachen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberHughbanks, Timothy R.
dc.contributor.committeeMemberNaugle, Donald G.
dc.contributor.committeeMemberZhou, Hongcai
dc.type.genreElectronic Dissertationen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record