Show simple item record

dc.contributor.advisorSchechter, David S.
dc.creatorSyihab, Zuher
dc.date.accessioned2011-02-22T22:24:22Z
dc.date.accessioned2011-02-22T23:48:51Z
dc.date.available2011-02-22T22:24:22Z
dc.date.available2011-02-22T23:48:51Z
dc.date.created2009-12
dc.date.issued2011-02-22
dc.date.submittedDecember 2009
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7592
dc.description.abstractFractured reservoirs are generally simulated using Warren and Root26 dual-porosity (DP) approach. The main assumption of this approach is that the geometry of fractures are uniformly distributed and interconnected in reservoirs. This may be true for many cases of naturally fractured reservoirs. However, for a large scale and disconnected fractured reservoirs, DP is often not applicable. Due to the latter case, it is necessary to have more sophisticated simulation studies which allow the fracture to be geometry explicitly represented into the static model using Discrete Fracture Network (DFN) approach. Most work on DFN grid model up to recently has been done with Delaunay tessellations. This research proposes an alternative technique to discretize the two-dimensional DFN using Voronoi diagrams, nevertheless applying the same DFN principles outlined in previous work. Through complicated procedures to generate DFN model, grid system based on Voronoi polygons has been developed. The procedure will force Voronoi edges follow the exact geometry of fractures. Furthermore, implementing the Voronoi diagrams allows the use of fewer polygons than the traditional Local Grid Refinement (LGR). And most importantly, due to the nature of the Voronoi polygons or locally orthogonal grids, the transmissibility calculations can be simplified and are more accurate than corner point formulation for non-square grid blocks. Finally, the main and most important goal of this study is to develop a black-oil Control Volume Finite Difference (CVFD) reservoir simulator that allows us to model DFN more realistically. One of the features of the developed simulator is the capability to model individual fractures with non-uniform aperture distribution, such as log-normally distributed apertures as shown using X-Ray CT scanner measurements. Prior to using the DFN simulator to model reservoirs with fractures and their apertures distribution, the simulator was validated against commercial simulators. The simulator provides results in close agreement with those of a reference finite-difference simulator in cases where direct comparisons are possible. Several simulations of synthetic DFN were presented to demonstrate the robustness of the Voronoi diagrams to represent fracture networks and its aperture distributions. In summary, the simulation of the DFN using the proposed approaches is capable to model both fractured and unfractured systems. However, the DFN model with Voronoi grids requires more efforts on building the grid model compared to other methods. Numerically, simulations of fractured systems are very challenging.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectDFNen
dc.subjectSimulationen
dc.subjectGriddingen
dc.titleSimulation on Discrete Fracture Network Using Flexible Voronoi Griddingen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberWattenbarger, Robert A.
dc.contributor.committeeMemberMaggard, James B.
dc.contributor.committeeMemberEfendiev, Yalcin
dc.type.genreElectronic Dissertationen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record