Show simple item record

dc.contributor.advisorMcDeavitt, Sean M.
dc.contributor.advisorKaraman, Ibrahim
dc.creatorGarnetti, David J.
dc.date.accessioned2010-07-15T00:15:13Z
dc.date.accessioned2010-07-23T21:46:09Z
dc.date.available2010-07-15T00:15:13Z
dc.date.available2010-07-23T21:46:09Z
dc.date.created2009-12
dc.date.issued2010-07-14
dc.date.submittedDecember 2009
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7382
dc.description.abstractThe research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate for Pu and Am. The powder production system utilized the uranium hydrogen interaction in order to break down larger pieces of uranium into fine powder. After several iterations, a successful reusable system was built. The nominal size of the powder product was on the order of 1 to 3 mm. The resulting uranium powder was pressed into pellets of various compositions (DU, DU-10Zr, DU-Mg, DU-10Zr-Mg) and heated to approximately 650?C, just below the alphabeta phase transition of uranium. The dimensions of the pellets were measured before and after heating and in situ dimension changes were measured using a linear variable differential transducer (LVDT). Post experiment measurement of the pellets proved to be an unreliable indicator of sintering do the cracking of the pellets during cool down. The cracking caused increases in the diameter and height of the samples. The cracks occurred in greater frequency along the edges of the pellets. All of the pellets, except the DU-10Zr-Mg pellet, were slightly conical in shape. This is believed to be an artifact of the powder pressing procedure. A greater density occurs on one end of the pellet during pressing and thus leads to gradient in the sinter rate of the pellet. The LVDT measurements proved to be extremely sensitive to outside vibration, making a subset of the data inappropriate for analysis. The pellets were also analyzed using electron microscopy. All pellets showed signs of sintering and an increase in density. The pellets will the greatest densification and lowest porosity were the DU-Mg and DU-10Zr-Mg. The DU-Mg pellet had a porosity of 14 +or- 2.%. The DU-10Zr-Mg porosity could not be conclusively determined due to lack of clearly visible pores in the image, however there were very few pores indicating a high degree of sintering. In the DU-10Zr-Mg alloy, large grains of DU were surrounded by Zr. This phenomena was not present in the DU-10Zr pellet where the Zr and DU stayed segregated. There was no indication of alloying between the Zr and DU in pellets.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.subjectUraniumen
dc.subjectHydrideen
dc.subjectAlpha Phaseen
dc.subjectSinteringen
dc.subjectPowder Productionen
dc.subjectDehydrideen
dc.subjectFuelen
dc.titleUranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applicationsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentNuclear Engineeringen
thesis.degree.disciplineNuclear Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberShao, Lin
dc.type.genreElectronic Thesisen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record