Show simple item record

dc.contributor.advisorMuliana, Anastasia
dc.creatorKim, Jeong Sik
dc.date.accessioned2011-02-22T22:23:49Z
dc.date.accessioned2011-02-22T23:45:58Z
dc.date.available2011-02-22T22:23:49Z
dc.date.available2011-02-22T23:45:58Z
dc.date.created2009-12
dc.date.issued2011-02-22
dc.date.submittedDecember 2009
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7348
dc.description.abstractThis study introduces a time-dependent micromechanical model for a viscoelastic-viscoplastic analysis of particle-reinforced composite and hybrid composite. The studied particle-reinforced composite consists of solid spherical particle and polymer matrix as constituents. Polymer constituent exhibits time-dependent or inelastic responses, while particle constituent is linear elastic. Schapery's viscoelastic integral model is additively combined with a viscoplastic constitutive model. Two viscoplastic models are considered: Perzyna's model and Valanis's endochronic model. A unit-cell model with four particle and polymer sub-cells is generated to obtain homogenized responses of the particle-reinforced composites. A time-integration algorithm is formulated for solving the time-dependent and inelastic constitutive model for the isotropic polymers and nested to the unit-cell model of the particle composites. Available micromechanical models and experimental data in the literature are used to verify the proposed micromechanical model in predicting effective viscoelasticviscoplastic responses of particle-reinforced composites. Filler particles are added to enhance properties of the matrix in the fiber reinforced polymer (FRP) composites. The combined fiber and particle reinforced matrix forms a hybrid composite. The proposed micromechanical model of particle-reinforced composites is used to provide homogenized properties of the matrix systems, having filler particles, in the hybrid composites. Three-dimensional (3D) finite element (FE) models of composite's microstructures are generated for two hybrid systems having unidirectional long fiber and short fiber embedded in cubic matrix. The micromechanical model is implemented at the material (Gaussian) points of the matrix elements in the 3D FE models. The integrated micromechanical-FE framework is used to examine time-dependent and inelastic behaviors of the hybrid composites.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectviscoplasticityen
dc.subjectmicromechanicsen
dc.subjecthomogenizationen
dc.subjecthybrid compositeen
dc.subjectparticleen
dc.subjectviscoelasticityen
dc.titleA Micromechanical Model for Viscoelastic-Viscoplastic Analysis of Particle Reinforced Compositeen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberOchoa, Ozden
dc.contributor.committeeMemberGao, Xin-Lin
dc.contributor.committeeMemberBenzerga, Amine
dc.type.genreElectronic Dissertationen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record