Show simple item record

dc.contributor.advisorMoreira, Rosana G.
dc.creatorPandey, Akhilesh
dc.date.accessioned2011-02-22T22:23:44Z
dc.date.accessioned2011-02-22T23:45:30Z
dc.date.available2011-02-22T22:23:44Z
dc.date.available2011-02-22T23:45:30Z
dc.date.created2009-12
dc.date.issued2011-02-22
dc.date.submittedDecember 2009
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7342
dc.description.abstractA batch vacuum frying system, which processes fruits and vegetables, includes a frying pan, a surface-condenser, and a vacuum pump. With health and safety issues in mind, this research focused on developing a modified surface-condenser to prevent cavitation of the vacuum pump. The final oil-content was reduced by centrifugal de- oiling of the product under vacuum, which make the product healthier than what is currently available. The de-oiling mechanism consists of a centrifuge with a motor attached to the basket shaft, rotating up to 750 rpm (63 g units). The condenser consists of a (counter- flow) spiral-coil heat exchanger (SHE) connected to a refrigeration system that uses R404a refrigerant. De-oiling for 40 s at 300 and 750 RPM removed up to 67% and 72% of the chip’s surface oil, respectively. At 750 RPM for 10 s, 40 s, and 60 s the oil-content was reduced by 38%, 44%, and 51%, respectively. The convective heat transfer coefficient (h) of the frying oil was determined at 120°C and 140°C using the lumped capacitance method. The h-values were 217±13 W/m2K (120°C) and 258±37 W/m2K (140°C) using a copper-ball thermocouple. The h- values increased to 3.6 times during the boiling period. COMSOLTM Multiphysics was used to model the heat transfer in the vacuum fryer pan. Based on the simulation results, a 1.5 cm thick insulation material was installed in the fryer to reduce the energy losses. The refrigeration system operates at Tevap = -26°C and Tcond = 50°C with 26°C sub-cooling. Sensitivity analysis showed that the system Coefficient of Performance (COP) was about 3.87 at these conditions and compressor power requirement (CPR) was 74 W (85% efficiency) when frying 30 g of potatoes slices. The best results were obtained at Tevap = -10°C and Tcond = 40°C with 26°C sub-cooling and superheat of 5°C. The predicted COP was 4 and the CPR 70 W. The ice-formation on coils reduced the condensation rate. Reducing the refrigerant temperature to -10°C (from -26°C) reduced the condensation rate by 30%. These results show a more effective vacuum frying system for high-quality fruits and vegetables than the system previously used.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectVacuum fryingen
dc.subjectvacuum fryer comsolen
dc.subjectMoreiraen
dc.subjectcondenseren
dc.subjectcentrifugeen
dc.subjectfryer designen
dc.subjectfryer modelingen
dc.subjectAkhilesh Pandeyen
dc.titleDesign and Optimization of Condenser and Centrifuge Units for Enhancement of a Batch Vacuum Frying Systemen
dc.typeThesisen
thesis.degree.departmentBiological and Agricultural Engineeringen
thesis.degree.disciplineBiological and Agricultural Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberCastell-Perez, Elena M.
dc.contributor.committeeMemberBarrufet, Maria
dc.type.genrethesisen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record