Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Graduate and Professional School
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Graduate and Professional School
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Finite Element Analysis of Three-Phase Piezoelectric Nanocomposites

    Thumbnail
    View/ Open
    MAXWELL-THESIS.pdf (489.4Kb)
    Date
    2010-10-12
    Author
    Maxwell, Kevin S.
    Metadata
    Show full item record
    Abstract
    In recent years, traditional piezoelectric materials have been pushed to the limit in terms of performance because of countless novel applications. This has caused an increased interest in piezoelectric composites, which combine two or more constituent materials in order to create a material system that incorporates favorable attributes from each constituent. One or more of the constituents exhibits piezoelectric behavior, so that the composite has an effective electromechanical coupling. The composite material may also have enhanced properties such as stiffness, durability, and flexibility. Finite element analyses were conducted on a three-phase piezoelectric nanocomposite in order to investigate the effects of several design parameters on performance. The nanocomposite consisted of a polyimide matrix, beta-CN APB/ODPA, enhanced with single wall carbon nanotubes and PZT-5A particles. The polyimide and nan- otube phases were modeled as a single homogenized phase. This results in a two-phase nanocomposite that can be modeled entirely in the continuum domain. The material properties for the nano-reinforced matrix and PZT-5A were obtained from previous experimental efforts and from the literature. The finite element model consisted of a single representative volume element of the two-phase nanocomposite. Exact periodic boundary conditions were derived and used to minimize the analysis region. The effective mechanical, electrical, and piezoelectric properties were computed for a wide range of nanotube and PZT particle concentrations. A discrepancy was found between the experimental results from the literature and the computational results for the effective electrical properties. Several modified finite element models were developed to explore possible reasons for this discrepancy, and a hypothesis involving dispersion of the nanotubes was formulated as an attempt to explain the difference. The response of the nanocomposite under harmonic loading was also investigated using the finite element model. The effective properties were found to be highly dependent on the dielectric loss of the beta CN/SWNT matrix. It was also found that increasing the matrix loss enhanced piezoelectric performance up to a certain point. Exploiting this type of behavior could be an effective tool in designing piezoelectric composite materials.
    URI
    https://hdl.handle.net/1969.1/ETD-TAMU-2009-08-6982
    Subject
    piezoelectric nanocomposites
    finite element analysis
    FEA
    piezoelectric composites
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Maxwell, Kevin S. (2009). Finite Element Analysis of Three-Phase Piezoelectric Nanocomposites. Master's thesis, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /ETD -TAMU -2009 -08 -6982.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV