Show simple item record

dc.creatorCanon Moreno, Javier Mauricio
dc.date.accessioned2012-06-07T23:20:02Z
dc.date.available2012-06-07T23:20:02Z
dc.date.created2003
dc.date.issued2003
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2003-THESIS-C36
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 92-94).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractIn this thesis, the usefulness and benefits of predicting proppant flowback in the design stage of hydraulic fracturing treatments are evidenced. A new prediction model, as well as a methodology, is proposed in this work. These tools will help companies handle this phenomenon and consequently conduct more efficient fracturing treatments. Currently, proppant flowback is responsible for creating operational complications, increasing expenses and decreasing the productivity of fracture stimulated wells. So far, there have been some empirical approaches that have tried to explain this phenomenon and have helped identify the most important factors that influence it. However, all previous models have drawbacks and do not extend to all practical applications. In this work, the most relevant studies in the area were analyzed in order to clarify the mechanisms that govern the proppant flowback phenomenon. After doing this, the most consistent available features were included in a proposed semi-mechanistic model. This model is considered to be the most rigorous available approach to predict proppant flowback in future treatments. As part of this study, field cases that reported back-production of proppant were analyzed. From this analysis, it was demonstrated that proppant flowback was possible to anticipate. In addition, it was suggested the inclusion of a "Stability Criterion" in the design of future optimum fracturing treatments.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectpetroleum engineering.en
dc.subjectMajor petroleum engineering.en
dc.titlePredicting proppant flowback from fracture-stimulated wellsen
dc.typeThesisen
thesis.degree.disciplinepetroleum engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access