Show simple item record

dc.creatorWatson, Aaron Michael
dc.date.accessioned2012-06-07T23:19:20Z
dc.date.available2012-06-07T23:19:20Z
dc.date.created2002
dc.date.issued2002
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-W273
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaf 114).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThere has been some concern in recent years about the buildup of separated civil plutonium in the world. In order to address issues related to these concerns, it is useful to have models that provide quantitative predictions of this buildup, under various scenarios. Our goal was to develop a publicly available model that would allow users to specify scenarios of their own, not simply the scenarios we envisioned. We believe this approach will provide a more complete understanding of the processes involved in the creation, storage, and utilization of potentially destructive nuclear material. Western Europe and Japan, namely France, Belgium, the United Kingdom, Germany, Switzerland, and Japan, were chosen as a starting point because the issues present in these countries, we believe, represent the pressing issues in all nuclear countries and may fully address the current problems in the buildup of reactor grade plutonium in the world today. In addition, these countries have contributed a substantial quantity of material to the amount of civil separated plutonium present today, so we thought it wise to begin here. We have developed a model of the nuclear fuel cycle in Western Europe and Japan using STELLA®. Our model uses the simple "stock and flow" structure of STELLA® to describe the discharge, storage, and reprocessing of spent nuclear fuel from commercial power reactors, and the creation, storage, and utilization of reactor-grade civil separated plutonium in these regions. This provides an interface that is user-friendly and can be run on any computing platform that can operate the STELLA® software. In addition, detailed changes can be easily made to the model, if the user desires. We will describe features of the model from the perspective of a user, give the results of a few scenarios, and delineate plausibility tests of the model.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectnuclear engineering.en
dc.subjectMajor nuclear engineering.en
dc.titleTAMCN: a tool for aggregate modeling of civil nuclear materialsen
dc.typeThesisen
thesis.degree.disciplinenuclear engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access