Show simple item record

dc.creatorPhan, Huy Ngoc
dc.date.accessioned2012-06-07T23:17:26Z
dc.date.available2012-06-07T23:17:26Z
dc.date.created2002
dc.date.issued2002
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-P43
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 52-54).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractSingle-Jet and Multi-Jet Aerosol to Hydrosol Transfer Stages (AHTS) with cutpoints of 2 and 0.8 []m AD, respectively, were designed and evaluated. Both devices operate at nominal air sampling flow rate of 1 L/min, 0.1% Tween®20, and 0.3 mL/min. collection liquid flow rate. Both systems have an ideal air power consumption of 1.4 mW and 4.5 mW, respectively. The total electrical power consumption, including that needed to heat the airstream and a sampling enclosure, is approximately 55 W at -23°C (-10°F) outside air temperature. The AHTSs were tested using polystyrene solid and oleic acid liquid aerosol particles to determine the collection efficiencies. The effectiveness of the fractional collection efficiency for the Single-Jet and Multi-Jet are 91% over the size range of 2 to 10 []m AD, and 90% over the size range of 1 to 10 []m AD, respectively. The hydrosol collection efficiency of the Multi-Jet is 95% over the size of 1 to 3 []m AD. The influence of a cleaning solution that was comprised of distilled water and 0.1% Tween®20 yielded an average collection efficiency of above 90% for the Single-Jet and 98% for the Multi-Jet. When the liquid flow rate is equal to or greater than 0.3 mL/min, the hydrosol collection efficiency is constant at 90%. The time responses for Single-Jet and Multi-Jet are 1.4 and 0.75 minutes, respectively. Preliminary results of bioaerosol testing with 0.7 []m AD single spores of Bacillus globigii var. niger show efficiencies over 100%. These discrepancies are probably due to the testing procedures at the U.S. Army Research Office, Chemical Biological Center, Edgewood, MD, facilities.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleAerosol-to-Hydrosol Transfer Stages for use in bioaerosol samplingen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access