Show simple item record

dc.creatorBahukudumbi, Pradipkumar
dc.date.accessioned2012-06-07T23:11:30Z
dc.date.available2012-06-07T23:11:30Z
dc.date.created2002
dc.date.issued2002
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2002-THESIS-B345
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 83-90).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractWe analyze rarefied gas flows in lubricating films that form between the read/write head and rotating recording medium in computer hard drives. A modified slip-corrected Reynolds lubrication equation is derived for arbitrary Knudsen numbers using the Navier-Stokes equation with consistent slip boundary conditions and modified physical coefficients. In particular, we present results of velocity profiles, pressure distribution and load capacity for various slider bearing configurations. An empirical model for the velocity distribution is developed by studying the Poiseuille and Couette flow components of the lubricating film. Important lubrication characteristics such as the pressure distribution and load capacity are obtained directly from numerical solutions of the modified Reynolds equation. In addition, we outline a method to accurately predict the shear drag forces induced by air resistance to the track-access-motion of the sliders. The new model is validated by comparisons with numerical solutions of the generalized lubrication equation based on the two-dimensional linearized Boltzmann equation and Direct Simulation Monte Carlo (DSMC) results available in the literature. The model predicts the velocity profiles, pressure distribution, load capacity and skin friction with good accuracy for a wide range of Knudsen numbers for low subsonic compressible flows. However it exhibits some physical limitations in the free molecular flow regime, due to its use of a Poiseuille flowrate database obtained via the solution of a two- dimensional Boltzmann equation.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleA phenomenological model for rarefied gas flows in thin film slider bearingsen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access