Show simple item record

dc.creatorPeach, Allen Edward
dc.date.accessioned2012-06-07T23:07:39Z
dc.date.available2012-06-07T23:07:39Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-P395
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 73-76).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractA two-year study was conducted at Big Brown lignite mine in Freestone County, Texas, to determine the influence of surface mining and reclamation on the functional and taxonomic diversity in soil microbial communities. Quarterly soil samples were collected along a chronosequence including sites of 0, 1, 4, 12, and 28 years following mining and reclamation. In addition to these sites, an unmined reference site, and a tree mott (reclamation age of 20 years) were included in the study. The functional diversity of the microbial communities was assessed using the Biolog sole-carbon source utilization (SCSU) assay. Taxonomic diversity was measured using whole-soil fatty acid methyl ester (FAME) analysis. Results indicated that surface mining had a transient influence on both the functional and taxonomic diversity of the soil microbial communities reducing complexity during disturbance and early reclamation. However, the effect was reversed as the reclamation process matured. Principal component analysis (PCA) was able to separate the younger sites from the older sites in both the SCSU profiles and the FAME profiles of the soils. The separation of sites was greater, however, in the analysis of the FAME profiles suggesting a more significant change in the level of taxonomic diversity. Results from the SCSU analysis revealed a return to similarity with the reference site between one and four years. Fatty acid methyl ester profiles indicated a return to similarity with the reference site in approximately 12 years.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectsoil science.en
dc.subjectMajor soil science.en
dc.titleFunctional and taxonomic diversity of microbial communities in reclaimed East Texas lignite mine soilsen
dc.typeThesisen
thesis.degree.disciplinesoil scienceen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access