Show simple item record

dc.creatorMayes, John Jeramy
dc.date.accessioned2012-06-07T23:06:34Z
dc.date.available2012-06-07T23:06:34Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-M38433
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 93-99).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThis work details an investigation into the suitability of Shape Memory Alloys for the task of vibration isolation based on the similarities between the Shape Memory Alloy pseudoelastic behavior and the softening response of isolators whose response is similar to a buckling elastomer. In this work, a simplified material model for the prediction of the non-linear, hysteretic nature of the pseudoelastic force-displacement relationship is developed. This material model is coupled with the numerical simulation of a dynamic system whose restoring force is provided by Shape Memory Alloys, providing an efficient software tool for the modelling of such systems. A thorough experimental investigation is also presented in which the behavior of a prototype Shape Memory Alloy-based isolation device is explored. Numerous quasi-static tests are performed, as well as a comprehensive series of dynamic tests on the prototype device. Results of these tests are compared with the predictions of the numeric simulation. From this comparison, several important conclusions are drawn concerning the application of Shape Memory Alloys to vibrating systems. The most important conclusion is that in order for the non-linearity and hysteresis present in Shape Memory Alloys to be effective in reducing the transmissibility of a dynamic system, there must be large amplitude deflections in the system.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectaerospace engineering.en
dc.subjectMajor aerospace engineering.en
dc.titleSuitability of Shape Memory Alloys for vibration isolation with application to launch vehicle payloadsen
dc.typeThesisen
thesis.degree.disciplineaerospace engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record