Show simple item record

dc.creatorKrishna, Kiran
dc.date.accessioned2012-06-07T23:05:52Z
dc.date.available2012-06-07T23:05:52Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-K75
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 66-68).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractHeat transfer fluids are widely used in the chemical process industry and are available in a wide range of properties. These fluids are flammable above their flash points and can cause explosions. Though the possibility of aerosol explosions has been widely documented, knowledge about the explosive potential of such aerosols is limited and critically needed. The aerosol droplet size distributions of heat transfer fluids must be studied to characterize their explosion hazards. This research involves non-intrusive measurement of such aerosol sprays using a Malvern Instrument Diffraction Particle Analyzer. The aerosol is generated by plain orifice atomization to simulate the formation and dispersion of heat transfer fluid aerosols through leaks in process equipment. Predictive models relating the aerosol formation distances, aerosol droplet size, and volume concentrations to bulk liquid pressure, temperature, fluid properties, leak size and ambient conditions are developed. These models will be used to predict the conditions under which leaks will result in the formation of aerosols and ultimately help in estimating the explosion hazard of heat transfer fluid aerosols. The goal is to provide industry information that will help improve process safety.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectchemical engineering.en
dc.subjectMajor chemical engineering.en
dc.titleNon-intrusive characterization of heat transfer fluid aerosol formationen
dc.typeThesisen
thesis.degree.disciplinechemical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access