Show simple item record

dc.creatorFalla Ramirez, Jorge H
dc.date.accessioned2012-06-07T23:04:02Z
dc.date.available2012-06-07T23:04:02Z
dc.date.created2001
dc.date.issued2001
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2001-THESIS-F36
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 66-69).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractAdvancements in deepwater drilling have necessitated the use of more specialized reservoir drill-in fluids (RDIF). These RDIFs must exhibit unique rheological properties while minimizing formation damage. Xanthan gum biopolymer is generally used as a primary viscosifier in RDIFs. In high salinity brines the high shear rate viscosity that xanthan gum provides can approach levels that could exceed the fracture gradient of the well. Therefore, it is important to maintain a xanthan gum concentration that keeps the equivalent circulating density at a modest level. Reducing the xanthan gum level, however, compromises the hole cleaning properties that the low- shear-rate viscosity provides. Xanthan gum biopolymers are also associated with formation damage, which inhibits the flow of oil and gas during production. A new RDIF, which utilizes no xanthan gum biopolymer, has been recently developed. The new product uses a starch instead of polymer to develop rheological properties. This fluid will primarily be targeted for production zone drilling in highly deviated and horizontal wells. This research focused on filtercake cleanup and the reduced formation damage associated with this biopolymer-free fluid. The behavior of the polymer free fluid was analyzed developing tests at different temperatures, at different drill solids content, and with different treatment fluids. The laboratory methods used were a ceramic disc cell and a linear flow cell. The former will permit an analysis of the time that a certain cleaning treatment takes to flow through a filter cake. The latter simulates well completions in unconsolidated horizontal well reservoirs permitting the estimation of formation damage produced by drilling and completion fluids and the effectiveness of the cleaning treatment applied. Multivariate statistical analysis was performed with the experimental results obtained. Comparison with conventional RDIF data from polymer carbonate and sized salt fluids provided informative contrasts in performance.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectpetroleum engineering.en
dc.subjectMajor petroleum engineering.en
dc.titleEvaluation of polymer free drill-in fluids for use in high productivity, horizontal well completionsen
dc.typeThesisen
thesis.degree.disciplinepetroleum engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access